Version 6 (modified by 2 weeks ago) (diff)  ,

Implementation of the Analysis Step for Hybrid 3DVar with OMI
Implementation Guide
 Main page
 Adaptation of the parallelization
 Initialization of PDAF
 Modifications for ensemble integration
 Implementation of the analysis step with OMI
 General overview for ensemble filters
 General overview for 3DVar methods
 Implementation for 3DVar
 Implementation for 3D Ensemble Var
 Implementation for Hybrid 3DVar
 Implementation for Hybrid 3DVar without PDAFlocal
 PDAFOMI Overview
 Memory and timing information
 Ensemble Generation
 Diagnostics
Contents of this page
 Overview
 Analysis Routines

Usersupplied routines

U_collect_state
(collect_state_pdaf.F90) 
U_distribute_state
(distribute_state_pdaf.F90) 
U_init_dim_obs_pdafomi
(callback_obs_pdafomi.F90) 
U_obs_op_pdafomi
(callback_obs_pdafomi.F90) 
U_cvt_ens
(cvt_ens_pdaf.F90) 
U_cvt_adj
(cvt_adj_pdaf.F90) 
U_cvt
(cvt_pdaf.F90) 
U_cvt_adj
(cvt_adj_pdaf.F90) 
U_obs_op_lin_pdafomi
(callback_obs_pdafomi.F90) 
U_obs_op_adj_pdafomi
(callback_obs_pdafomi.F90) 
U_init_n_domains
(init_n_domains_pdaf.F90) 
U_init_dim_l
(init_dim_l_pdaf.F90) 
U_init_dim_obs_l_pdafomi
(callback_obs_pdafomi.F90) 
U_prepoststep
(prepoststep_ens_pdaf.F90) 
U_next_observation
(next_observation_pdaf.F90)

 Execution order of usersupplied routines
Overview
This page describes the recommended implementation of the analysis step of local filters with OMI using the PDAFlocal interface that was introduced with PDAF V2.3. The older approach calling PDAFomi_assimilate_local or PDAFomi_put_state_local is documented on the page on Implementing the Analysis Step for 3D Ensemble Var with OMI without PDAFlocal (until V2.2.1 of PDAF).
There are genenerally three different variants: parameterized 3DVar, 3D Ensemble Var, and hybrid (parameterized + ensemble) 3DVar.
This page describes the implementation of the analysis step for the Hybrid 3DVar using PDAFOMI.
For the analysis step of 3DVar we need different operations related to the observations. These operations are requested by PDAF by callback routines supplied by the user and provided in the OMI structure. The names of the routines that are provided by the user are specified in the call to the routine PDAFomi_assimilate_hyb3dvar_*
in the fullyparallel implementation (or PDAFomi_put_state_hyb3dvar_*
for the 'flexible' implementation) that was discussed before. With regard to the parallelization, all these routines (except U_collect_state
, U_distribute_state
, and U_next_observation
) are executed by the filter processes (filterpe=.true.
) only.
For Hybrid 3DVar the background covariance matrix B is represented by a combination of a parameterized covariance matrix with a covariance matrix part represented by the ensemble. In practive this means that in the square root of B one concatenates parameterized and ensemble columns. The ensemble perturbations need to be transformed by means of an ensemble Kalman filter. PDAF uses for this the errorsubspace transform filter ESTKF. There are two variants: The first uses the localized filter LESTKF, while the second uses the global filter ESTKF.
For completeness we discuss here all usersupplied routines that are specified in the interface to PDAFomi_assimilate_hyb3dvar_X
. Thus, some of the usersupplied routines that are explained on the page describing the modification of the model code for the ensemble integration are repeated here.
Analysis Routines
The general aspects of the filter (or solver) specific routines PDAF_assimilate_*
have been described on the page Modification of the model code for the ensemble integration and its subpage on inserting the analysis step. The routine is used in the fullyparallel implementation variant of the data assimilation system. When the 'flexible' implementation variant is used, the routines PDAF_put_state_*
is used as described further below. Here, we list the full interface of the routine. Subsequently, the usersupplied routines specified in the call is explained.
There are two variants that either compute the transformataion of the ensemble transformation using the local LESTKF method, or the global ESTKF.
PDAFlocalomi_assimilate_hyb3dvar_lestkf
This routine is called for the case of transforming the ensemble perturbations using the local LESTKF.
The interface is:
SUBROUTINE PDAFlocalomi_assimilate_hyb3dvar_lestkf(U_collect_state, U_distribute_state, & U_init_dim_obs_pdafomi, U_obs_op_pdafomi, & U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, & U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, & U_init_n_domains_p, U_init_dim_l, U_init_dim_obs_l_pdafomi, & U_prepoststep, U_next_observation, outflag)
with the following arguments:
 U_collect_state: The name of the usersupplied routine that initializes a state vector from the array holding the ensemble of model states from the model fields. This is basically the inverse operation to
U_distribute_state
used inPDAF_get_state
as well as here.  U_distribute_state: The name of a user supplied routine that initializes the model fields from the array holding the ensemble of model state vectors.
 U_init_dim_obs_pdafomi: The name of the usersupplied routine that initializes the observation information and provides the size of observation vector
 U_obs_op_pdafomi: The name of the usersupplied routine that acts as the observation operator on some state vector
 U_cvt_ens: The name of the usersupplied routine that applies the ensemble controlvector transformation (squareroot of the Bmatrix) on some control vector to obtain a state vector.
 U_cvt_adj_ens: The name of the usersupplied routine that applies the adjoint ensemble controlvector transformation (with squareroot of the Bmatrix) on some state vector to obtain the control vector.
 U_cvt: The name of the usersupplied routine that applies the controlvector transformation (squareroot of the Bmatrix) on some control vector to obtain a state vector.
 U_cvt_adj: The name of the usersupplied routine that applies the adjoint controlvector transformation (with squareroot of the Bmatrix) on some state vector to obtain the control vector.
 U_obs_op_lin_pdafomi: The name of the usersupplied routine that acts as the linearized observation operator on some state vector
 U_obs_op_lin_pdafomi: The name of the usersupplied routine that acts as the adjoint observation operator on some state vector
 U_init_n_domains: The name of the routine that provides the number of local analysis domains
 U_init_dim_l: The name of the routine that provides the state dimension for a local analysis domain
 U_init_dim_obs_l_pdafomi: The name of the routine that initializes the size of the observation vector for a local analysis domain
 U_g2l_state: The name of the routine that initializes a local state vector from the global state vector
 U_l2g_state: The name of the routine that initializes the corresponding part of the global state vector from the provided local state vector
 U_prepoststep: The name of the pre/poststep routine as in
PDAF_get_state
 U_next_observation: The name of a user supplied routine that initializes the variables
nsteps
,timenow
, anddoexit
. The same routine is also used inPDAF_get_state
. status
: The integer status flag. It is zero, if the routine is exited without errors.
PDAFomi_assimilate_hyb3dvar_estkf
This routine is called for the case of transforming the ensemble perturbations using the global ESTKF.
The interface is:
SUBROUTINE PDAFomi_assimilate_hyb3dvar_estkf(U_collect_state, U_distribute_state, & U_init_dim_obs_pdafomi, U_obs_op_pdafomi, & U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, & U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, & U_prepoststep, U_next_observation, outflag)
with the following arguments:
 U_collect_state: The name of the usersupplied routine that initializes a state vector from the array holding the ensemble of model states from the model fields. This is basically the inverse operation to
U_distribute_state
used inPDAF_get_state
as well as here.  U_distribute_state: The name of a user supplied routine that initializes the model fields from the array holding the ensemble of model state vectors.
 U_init_dim_obs_pdafomi: The name of the usersupplied routine that initializes the observation information and provides the size of observation vector
 U_cvt_ens: The name of the usersupplied routine that applies the ensemble controlvector transformation (squareroot of the Bmatrix) on some control vector to obtain a state vector.
 U_cvt_adj_ens: The name of the usersupplied routine that applies the adjoint ensemble controlvector transformation (with squareroot of the Bmatrix) on some state vector to obtain the control vector.
 U_cvt: The name of the usersupplied routine that applies the controlvector transformation (squareroot of the Bmatrix) on some control vector to obtain a state vector.
 U_cvt_adj: The name of the usersupplied routine that applies the adjoint controlvector transformation (with squareroot of the Bmatrix) on some state vector to obtain the control vector.
 U_obs_op_pdafomi: The name of the usersupplied routine that acts as the observation operator on some state vector
 U_obs_op_lin_pdafomi: The name of the usersupplied routine that acts as the linearized observation operator on some state vector
 U_obs_op_lin_pdafomi: The name of the usersupplied routine that acts as the adjoint observation operator on some state vector
 U_prepoststep: The name of the pre/poststep routine as in
PDAF_get_state
 U_next_observation: The name of a user supplied routine that initializes the variables
nsteps
,timenow
, anddoexit
. The same routine is also used inPDAF_get_state
. status
: The integer status flag. It is zero, if the routine is exited without errors.
Notes:
 The interface of
PDAFomi_assimilate_en3dvar_estkf
is identical to that ofPDAFomi_assimilate_3dvar
apart from using the routinesU_cvt_ens
andU_cvt_adj_ens
in case of the ensemble variational method.  If your code shows a call to
PDAFomi_assimilate_hyb3dvar_lestkf
, it uses the implementation variant without PDAFlocal. This is documented on the page on Implementing the Analysis Step for hybrid 3D Var with OMI without PDAFlocal (until V2.2.1 of PDAF)?.
PDAFlocalomi_put_state_hyb3dvar_lestkf
When the 'flexible' implementation variant is chosen for the assimilation system, the routine PDAFomi_put_state_*
has to be used instead of PDAFomi_assimilate_*
. The general aspects of the filter specific routines PDAF_put_state_*
have been described on the page Modification of the model code for the ensemble integration. The interface of the routine is identical with that of PDAF_assimilate_*
with the exception the specification of the usersupplied routines U_distribute_state
and U_next_observation
are missing.
The interface when using one of the global filters is the following:
SUBROUTINE PDAFlocalomi_put_state_hyb3dvar_lestkf(U_collect_state, & U_init_dim_obs_pdafomi, U_obs_op_pdafomi, & U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, & U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, & U_init_n_domains_p, U_init_dim_l, U_init_dim_obs_l_pdafomi, & U_prepoststep, outflag)
Note:
 If your code shows a call to
PDAFomi_put_state_hyb3dvar_lestkf
, it uses the implementation variant without PDAFlocal. This is documented on the page on Implementing the Analysis Step for hybrid 3D Var with OMI without PDAFlocal (until V2.2.1 of PDAF)?.
PDAFomi_put_state_hyb3dvar_estkf
The interface of this routine is analogous to that of PDAFomi_assimilate_en3dvar_estkf'. Thus it is identical to this routine with the exception the specification of the usersupplied routines
U_distribute_state and
U_next_observation` are missing.
The interface when using one of the global filters is the following:
SUBROUTINE PDAFomi_put_state_hyb3dvar_estkf(U_collect_state, & U_init_dim_obs_pdafomi, U_obs_op_pdafomi, & U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, & U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, & U_prepoststep, outflag)
Usersupplied routines
Here all usersupplied routines are described that are required in the call to the assimilation routines for hybrid 3DVar. For some of the generic routines, we link to the page on modifying the model code for the ensemble integration.
To indicate usersupplied routines we use the prefix U_
. In the template directory templates/
as well as in the tutorial implementations in tutorial/
these routines exist without the prefix, but with the extension _pdaf.F90
. The userroutines relating to OMI are collected in the file callback_obs_pdafomi.F90
. In the section titles below we provide the name of the template file in parentheses.
In the subroutine interfaces some variables appear with the suffix _p
. This suffix indicates that the variable is particular to a model subdomain, if a domain decomposed model is used. Thus, the value(s) in the variable will be different for different model subdomains.
U_collect_state
(collect_state_pdaf.F90)
This routine is independent of the filter algorithm used.
See the page on inserting the analysis step for the description of this routine.
U_distribute_state
(distribute_state_pdaf.F90)
This routine is independent of the filter algorithm used.
See the page on inserting the analysis step for the description of this routine.
U_init_dim_obs_pdafomi
(callback_obs_pdafomi.F90)
This is a callback routine for PDAFOMI initializing the observation information. The routine just calls a routine from the observation module for each observation type.
See the documentation on callback_obs_pdafomi.F90 for more information.
U_obs_op_pdafomi
(callback_obs_pdafomi.F90)
This is a callback routine for PDAFOMI applying the observation operator to the state vector. The routine calls a routine from the observation module for each observation type.
See the documentation on callback_obs_pdafomi.F90 for more information.
U_cvt_ens
(cvt_ens_pdaf.F90)
The interface for this routine is:
SUBROUTINE cvt_ens_pdaf(iter, dim_p, dim_ens, dim_cv_ens_p, ens_p, cv_p, Vcv_p) INTEGER, INTENT(in) :: iter ! Iteration of optimization INTEGER, INTENT(in) :: dim_p ! PElocal observation dimension INTEGER, INTENT(in) :: dim_ens ! Ensemble size INTEGER, INTENT(in) :: dim_cv_ens_p ! Dimension of control vector REAL, INTENT(in) :: ens_p(dim_p, dim_ens) ! PElocal ensemble REAL, INTENT(in) :: cv_p(dim_cv_ens_p) ! PElocal control vector REAL, INTENT(inout) :: Vcv_p(dim_p) ! PElocal state increment
The routine is called during the analysis step during the iterative minimization of the cost function. It has to apply the control vector transformation to the control vector and return the transformed result vector. Usually this transformation is the multiplication with the squareroot of the background error covariance matrix B. For the 3D Ensemble Var, this square root is usually expressed through the ensemble.
If the control vector is decomposed in case of parallelization it first needs to the gathered on each processor and afterwards the transformation is computed on the potentially domaindecomposed state vector.
U_cvt_adj
(cvt_adj_pdaf.F90)
The interface for this routine is:
SUBROUTINE cvt_adj_ens_pdaf(iter, dim_p, dim_ens, dim_cv_ens_p, ens_p, Vcv_p, cv_p) INTEGER, INTENT(in) :: iter ! Iteration of optimization INTEGER, INTENT(in) :: dim_p ! PElocal observation dimension INTEGER, INTENT(in) :: dim_ens ! Ensemble size INTEGER, INTENT(in) :: dim_cv_ens_p ! PElocal dimension of control vector REAL, INTENT(in) :: ens_p(dim_p, dim_ens) ! PElocal ensemble REAL, INTENT(in) :: Vcv_p(dim_p) ! PElocal input vector REAL, INTENT(inout) :: cv_p(dim_cv_ens_p) ! PElocal result vector
The routine is called during the analysis step during the iterative minimization of the cost function. It has to apply the adjoint control vector transformation to a state vector and return the control vector. Usually this transformation is the multiplication with transpose of the squareroot of the background error covariance matrix B. or the 3D Ensemble Var, this square root is usually expressed through the ensemble.
If the state vector is decomposed in case of parallelization one needs to take care that the application of the trasformation is complete. This usually requries a comminucation with MPI_Allreduce to obtain a global sun.
U_cvt
(cvt_pdaf.F90)
The interface for this routine is:
SUBROUTINE cvt_pdaf(iter, dim_p, dim_cvec, cv_p, Vv_p) INTEGER, INTENT(in) :: iter ! Iteration of optimization INTEGER, INTENT(in) :: dim_p ! PElocal observation dimension INTEGER, INTENT(in) :: dim_cvec ! Dimension of control vector REAL, INTENT(in) :: cv_p(dim_cvec) ! PElocal control vector REAL, INTENT(inout) :: Vv_p(dim_p) ! PElocal result vector (state vector increment)
The routine is called during the analysis step during the iterative minimization of the cost function. It has to apply the control vector transformation to the control vector and return the transformed result vector. Usually this transformation is the multiplication with the squareroot of the background error covariance matrix B.
If the control vector is decomposed in case of parallelization it first needs to the gathered on each processor and afterwards the transformation is computed on the potentially domaindecomposed state vector.
U_cvt_adj
(cvt_adj_pdaf.F90)
The interface for this routine is:
SUBROUTINE cvt_adj_pdaf(iter, dim_p, dim_cvec, Vv_p, cv_p) INTEGER, INTENT(in) :: iter ! Iteration of optimization INTEGER, INTENT(in) :: dim_p ! PElocal observation dimension INTEGER, INTENT(in) :: dim_cvec ! Dimension of control vector REAL, INTENT(in) :: Vv_p(dim_p) ! PElocal result vector (state vector increment) REAL, INTENT(inout) :: cv_p(dim_cvec) ! PElocal control vector
The routine is called during the analysis step during the iterative minimization of the cost function. It has to apply the adjoint control vector transformation to a state vector and return the control vector. Usually this transformation is the multiplication with transposed of the squareroot of the background error covariance matrix B.
If the state vector is decomposed in case of parallelization one needs to take care that the application of the trasformation is complete. This usually requries a comminucation with MPI_Allreduce to obtain a global sun.
U_obs_op_lin_pdafomi
(callback_obs_pdafomi.F90)
This is a callback routine for PDAFOMI applying the linearized observation operator to the state vector. The routine calls a routine from the observation module for each observation type. If the full observation operator is lineaer the same operator can be used here.
See the documentation on callback_obs_pdafomi.F90 for more information.
U_obs_op_adj_pdafomi
(callback_obs_pdafomi.F90)
This is a callback routine for PDAFOMI applying the adjoint observation operator to some vector inthe observation space. The routine calls a routine from the observation module for each observation type.
See the documentation on callback_obs_pdafomi.F90 for more information.
U_init_n_domains
(init_n_domains_pdaf.F90)
The interface for this routine is:
SUBROUTINE init_n_domains(step, n_domains_p) INTEGER, INTENT(in) :: step ! Current time step INTEGER, INTENT(out) :: n_domains_p ! Number of analysis domains for local model subdomain
The routine is called during the analysis step before the loop over the local analysis domains is entered. It has to provide the number of local analysis domains. In case of a domaindecomposed model the number of local analysis domain for the model subdomain of the calling process has to be initialized.
Hints:
 As a simple case, if the localization is only performed horizontally, the local analysis domains can be single vertical columns of the model grid. In this case,
n_domains_p
is simply the number of vertical columns in the local model subdomain.
U_init_dim_l
(init_dim_l_pdaf.F90)
The interface for this routine is:
SUBROUTINE init_dim_l(step, domain_p, dim_l) INTEGER, INTENT(in) :: step ! Current time step INTEGER, INTENT(in) :: domain_p ! Current local analysis domain INTEGER, INTENT(out) :: dim_l ! Local state dimension
The routine is called during the loop over the local analysis domains in the analysis step.
For PDAF it has to provide in dim_l
the dimension of the state vector for the local analysis domain with index domain_p
.
In addition, for PDAFlocal the routine has to provide the index array containing the indices of the elements of the local state vector in the global (or domaindecomposed) state vector to PDAFlocal by calling PDAFlocal_set_indices
. (in the template files, this array is called id_lstate_in_pstate
)
Hints:
 For sharing through the module
mod_assimilation
, we further initialize an arraycoords_l
containing the coordinates that describe the local domain. These coordinates have to describe one location in space that is used in the OMI observation modules to compute the distance from observations.
 The coordinates in
coords_l
have the same units as those used for the observations  For geographic distance computations, the unit of the coordinates needs to be radian, thus (0, 2*pi) or (pi,pi) for longitude and (pi/2, pi/2) for latitude.
 Any form of local domain is possible as long as it can be describe as a single location.
 If the local domain is a single grid point,
dim_l
will be the number of model variables at this grid point.  The local analysis domain can also be a single vertical column of the model grid if observations are only horizontally distributed (a common situation with satellite data in the ocean).
 In this case,
dim_l
will be the number of vertical grid points at this location times the number of model fields that exist in the vertical, plus possible variables at e.g. the surface.  In this case only the horizontal coordinates are used in
coords_l
.
 In this case,
 If the local domain is a single grid point,
The index array id_lstate_in_pstate
is an integer array in form of a onedimensional vector. One initializes this vector by determining the indices of the elements of the local state vector in the global, or domain decomposed, state vector. After initializing id_lstate_in_pstate
, one has to provided it to PDAFlocal by calling `PDAFlocal_set_indices'. The interface interface is:
SUBROUTINE PDAFlocal_set_indices(dim_l, id_lstate_in_pstate) INTEGER, INTENT(in) :: dim_l ! Dimension of local state vector INTEGER, INTENT(in) :: id_lstate_in_pstate(dim_l) ! Index array for mapping
Hint for id_lstate_in_pstate
:
 The initialization of the index vector
id_lstate_to_pstate
is analogous to a loop that directly performs the initialization of a local state vector. However, here only the indices are stored.  See the PDAFlocal overview page for more information on the functionality of PDAFlocal.
U_init_dim_obs_l_pdafomi
(callback_obs_pdafomi.F90)
This is a callback routine for PDAFOMI that initializes the local observation vector. The routine calls a routine from the observation module for each observation type.
See the documentation on callback_obs_pdafomi.F90 for more information.
U_prepoststep
(prepoststep_ens_pdaf.F90)
The routine has already been described for modifying the model for the ensemble integration and for inserting the analysis step.
See the page on inserting the analysis step for the description of this routine.
U_next_observation
(next_observation_pdaf.F90)
This routine is independent of the filter algorithm used.
See the page on inserting the analysis step for the description of this routine.
Execution order of usersupplied routines
The usersupplied routines are essentially executed in the order they are listed in the interface to PDAFomi_assimilate_3dvar
. The order can be important as some routines can perform preparatory work for later routines. For example, U_init_dim_obs_pdafomi
prepares an index array that provides the information for executing the observation operator in U_obs_op_pdafomi
. How this information is initialized is described in the documentation of OMI.
Before the analysis step is called the following routine is executed:
The analysis step is executed when the ensemble integration of the forecast is completed. During the analysis step the following routines are executed in the given order:
 U_prepoststep (Call to act on the forecast ensemble, called with negative value of the time step)
 U_init_dim_obs_pdafomi
 U_obs_op_pdafomi (multiple calls, one for each ensemble member)
Inside the analysis step the interative optimization is computed. This involves the repeated call of the routines:
After the iterative optimization the following routines are executes to complte the analysis step:
 U_cvt (Call to the parameterized part of the control vector transform to compute the final state vector increment)
 U_cvt_ens (Call to the eensemblepart of the control vector transform to compute the final state vector increment)
 U_prepoststep (Call to act on the analysis ensemble, called with (positive) value of the time step)
The iterative optimization abovve computes an updated ensemble mean state. Subsequently, the ensemble perturbations are updated using the LESTKF or ESTKF. The execution of the routines for these filters is described for the LESTKF on the page on implementing the local filter analysis step and for the ESTKF on the page on implementing the global filter analysis step.
In case of the routine PDAFomi_assimilate_*
, the following routines are executed after the analysis step: