wiki:PublicationsandPresentations

Version 265 (modified by lnerger, 5 months ago) (diff)

--

Publications and Presentations

Presentations

PDAF has been presented at different conferences. Here are slides from some of these presentations:

PDAF - Community Software for Ensemble-based Data Assimilation,
International Symposium on Data Assimilation - Online (ISDA-Online), January 14, 2022.

Data Assimilation in the Geosciences - Practical Data Assimilation with the Parallel Data Assimilation Framework,
Short Course at the EGU General Assembly 2019, Vienna, Austria, April 8-12, 2019.

Ensemble Data Assimilation with the Parallel Data Assimilation Framework,
Tutorial Session at Ocean Sciences Meeting 2018, Portland, OR, USA, February 12-16, 2018.

An introduction to Ensemble Data Assimilation,
Tutorial Session at Ocean Sciences Meeting 2016, New Orleans, USA, February 21-26, 2016.

Publications about PDAF

Nerger, L., Tang, Q., Mu, L. (2020). Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: Example of AWI-CM. Geoscientific Model Development, 13, 4305–4321, doi:10.5194/gmd-13-4305-2020

Nerger, L., Hiller, W. (2013). Software for Ensemble-based Data Assimilation Systems - Implementation Strategies and Scalability. Computers and Geosciences, 55, 110-118. doi:10.1016/j.cageo.2012.03.026

Nerger, L., Hiller, W., Schröter, J.(2005). PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering, Use of high performance computing in meteorology : proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology, Reading, UK, 25 - 29 October 2004 / Eds.: Walter Zwieflhofer; George Mozdzynski, Singapore: World Scientific, 63-83. doi:10.1142/9789812701831_0006 preprint

Publications involving PDAF

(This list is likely incomplete. If you see a paper missing, please write to us at pdaf _at_ awi _dot_ de)

Accepted

Stramska, M., Jakacki, J. (2024) Variability of chlorophyll a concentration in surface waters of the open Baltic Sea. Oceanologica, online doi:10.1016/j.oceano.2024.02.003

2024

Shao, C. and Nerger, L. (2024) WRF-PDAF v1.0: implementation and application of an online localized ensemble data assimilation framework, Geoscientific Model Development, 17, 4433–4445, doi:10.5194/gmd-17-4433-2024

Tang, Q., H. Delottier, W. Kurtz, L. Nerger, O. S. Schilling, P. Brunner (2024) HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model. Geoscientific Model Development, 17, 3559-3578 doi:10.5194/gmd-17-3559-2024

Düsterhus, A., S. Brune (2023) The effect of initialisation on 20 year multi-decadal climate predictions. Climate Dynamcics, 62, 831 doi:10.1007/s00382-023-06941-1

Masoum, A., L. Nerger, M .Willeit, A. Ganopolski, G. Lohmann (2024) Paleoclimate data assimilation with CLIMBER-X: An ensemble Kalman filter for the last deglaciation, PLoS ONE, 19(4), e0300138 doi:10.1371/journal.pone.0300138

Strebel, L., H. Bogena, H. Vereecken, M. Andreasen, S. Aranda-Barranco, H.-J. Hendricks Franssen (2024) Evapotranspiration prediction for European forest sites does not improve with assimilation of in situ soil water content data. Hydrology andd Earth System Sciences, 28, 1001-1026 doi:10.5194/hess-28-1001-2024

Shao, C. & L. Nerger (2024) The Impact of Profiles Data Assimilation on an Ideal Tropical Cyclone Case. Remote Sensing, 16, 430 doi:10.3390/rs16020430

Li, Y., Z. Cong, D. Yang (2024) The ecohydrological response to soil moisture based on the distributed hydrological assimilation model in the mountain region. Ecohydrology, 17, e2606 doi:10.1002/eco.2606

Zhang, Y.., J. Hou, C. Huang (2024) Basin scale soil moisture estimation with grid SWAT and LESTKF based on WSN. Sensors, 24, 35 doi:10.3390/s24010035

2023

Mo H, Qin Y, Wan L, Zhang Y, Huang X, Wang Y, Xing J, Yu Q, Wu X. Evaluating the Detection of Oceanic Mesoscale Eddies in an Operational Eddy-Resolving Global Forecasting System. Journal of Marine Science and Engineering. 2023; 11(12):2343. doi:10.3390/jmse11122343

Nerger, L., Y. Sun, S. Vliegen (2023). Improving ocean ecosystem predictions by coupled data assimilation of physical and biogeochemical observations. in Proceedings of the 10th EuroGOOS International Conference. European Operational Oceanography for the ocean we want - Addressing the UN Ocean Decade challenges. 3-5 October 2023, Galway, Ireland. Eparkhina, D., Nolan, J.E. (Eds). EuroGOOS. Brussels, Belgium. 2023. hdl:10793/1883

Mamnun, N., C. Völker, S. Krumscheid, M. Vrekoussis & L. Nerger (2023). Global sensitivity analysis of a one-dimensional ocean biogeochemical model. Socio-Environmental Systems Modelling, 5, 18613. doi:10.18174/sesmo.18613

Luo, H., Q. Yang, M. Mazloff, L. Nerger, and D. Chen (2023) The impacts of optimizing model-dependent parameters on the Antarctic sea ice data assimilation. Geophysical Research Letters, 50, e2023GL105690, doi:10.1029/2023GL105690

Min, C., Q. Yang, H. Luo, D. Chen, T. Krumpen, N. Mamnun, X. Liu, and L. Nerger (2023). Improving Arctic sea-ice thickness estimates with the assimilation of CryoSat-2 summer observations. Ocean-Land-Atmosphere Research, 6, 0025 doi:10.34133/olar.0025

Cook, S., F. Gillet-Chaulet, J. Fuerst. Robust reconstruction of glacier beds using transient 2D assimilation with Stokes. Journal of Glaciology. 69, 1393-1402, doi:10.1017/jog.2023.26

Koul, V., S. Brune, A. Akimova, A. Düsterhus, P. Pieper, L. Hövel, A. Parekh, C. Schrum, J. Baehr (2023) Geophysical Research Letters, 50, e2023GL103975 [httpd://doi.org/10.1029/2023GL103975 doi:10.1029/2023GL103975]

Fan, H., L. F. Borchert, S. Brune, V. Koul, J. Baehr (2023) North Atlantic subpolar gyre provides downstream ocean predictability. npj Climate and Atmospheric Science, 6, 145 doi:10.1038/s41612-023-00469-1

Sievers, I., T. A. S. Rasmussen, L. Stenseng (2023) Assimilating CryoSat-2 freeboard to improve Arctic sea ice thickness estimates. The Cryosphere, 17, 3721-3738, 10.5194/tc-17-3721-2023

Brunet, A., Dahmen, N., Katsavrias, C., Santolík, O., Bernoux, G., Pierrard, V., et al. (2023). Improving the electron radiation belt nowcast and forecast using the SafeSpace data assimilation modeling pipeline. Space Weather, 21, e2022SW003377 doi:10.1029/2022SW003377

Gerdener, H., J. Kusche, K. Schulze, P. Doell, A. Klos (2023). The global land water storage data set release 2 (GLWS2.0) derived via assimilating GRACE and GRACE-FO data into a global hydrological model. Journal of Geodesy, 97, 73 doi:10.1007/s00190-023-01763-9

Folch, A., et al. (2023) The EU Center of Excellence for Exascale in Solid Earth (ChEESE): Implementation, results, and roadmap for the second phase. Future Generation Computer Systems, 147, 47-61 doi:10.1016/j.future.2023.04.006

Brandhorst, N., I. Neuweiler. (2023) Impact of parameter updates on soil moisture assimilation in a 3D heterogeneous hillslope model. Hydrology and Earth System Sciences (HESS), 27, 1301-1323 doi:10.5194/hess-27-1301-2023

Pohlmann, H., S. Brune, K. Fröhlich, J. H. Jungclaus, C. Sgoff , J. Baehr. (2023) Impact of ocean data assimilation on climate predictions with ICON-ESM. Climate Dynamics, 61, 357–373 https://doi.org/10.1007/s00382-022-06558-w

Williams, N., N. Byrne, D. Feltham, P. J. van Leeuwen, R. Bannister, D. Schroeder, A. Ridout, L. Nerger (2023) The effects of assimilating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice data assimilation system. The Cryosphere, 17, 2509–2532 10.5194/tc-17-2509-2023

Fang, L., W. Kurtz, C.P. Hung, H. Vereecken, H.-J. Hendricks Franssen (2023) Water table depth assimilation in integrated terrestrial system models at the larger catchment scale. Frontiers in Water 5, 1150999 doi:10.3389/frwa.2023.1150999

Li, Y., Z. Cong, D. Yang. (2023) Remotely Sensed Soil Moisture Assimilation in the Distributed Hydrological Model Based on the Error Subspace Transform Kalman Filter. Remote Sensing, 15, 1852. doi:10.3390/rs15071852

2022

Tian, Z., X Liang, J. Zhang, H. Bi, F. Zhao, C. Li (2022) Thermodynamical and Dynamical Impacts of an Intense Cyclone on Arctic Sea Ice, Journal of Geophysical Research Oceans, 127, e2022JC018436. doi:10.1029/2022JC018436

Mu, L., L. Nerger, J. Streffing, Q. Tang, B. Niraula, L. Zampieri, S. N. Loza, H. F. Goessling. (2022) Sea-ice forecasts with an upgraded AWI Coupled Prediction System, Journal of Advances in Modeling Earth Systems, 14, e2022MS003176, doi:10.1029/2022MS003176

Krieger, D., S. Brune, P. Pieper, R. Weisse, J. Baehr. (2022) Skillful decadal prediction of German Bight storm activity. Nat. Hazards Earth Syst. Sci, 22, 3993-4009. doi:10.5194/nhess-22-3993-2022

Corbin, A, J. Kusche. (2022) Improving the estimation of thermospheric neutral density via two-step assimilation of in situ neutral density into a numerical model. Earth, Planets and Space, 74, 183. doi:10.1186/s40623-022-01733-z

Mamnun, N., C. Voelker, M. Vrekoussis, L. Nerger. (2022) Uncertainties in ocean biogeochemical simulations: Application of ensemble data assimilation to a one-dimensional model. Frontiers in Marine Science, 9, 984236. doi:10.3389/fmars.2022.984236

Hövel, L., S. Brune, J. Baehr. (2022) Decadal prediction of Marine HEatwaves in MPI_ESM. Geophysical Research Letters, 49, e2022GL099347. doi:10.1029/2022GL099347

Friedemann, S., Raffin, B. (2022) An elastic framework for ensemble-based large-scale data assimilation. International Journal of High Performance Computing Applications. doi:10.1177/10943420221110507

Hung, C. P., B. Schalge, G. Baroni, H. Vereecken, H.-J. Hendricks-Franssen (2022) Assimilation of Groundwater Level and Soil Moisture Data in an Integrated Land Surface-Subsurface Model for Southwestern Germany. Water Resources Research, 58, e2021WR031549, doi:10.1029/2021WR031549

Wang, H., T. Yang, Z. Wang, J. Li, W. Chai, G. Tang, L. Kong, X. Chen (2022) An aerosol vertical data assimilation system (NAQPMS-PDAF v1.0): development and application. Geoscientific Model Development, 15, 3555-3585 doi:10.5194/gmd-15-3555-2022

Ben Ali, M.Y., O. Léon, D. Donjat, H. Bézard, E. Laroche, V. Mons, F. Champagnat (2022) Data assimilation for aerothermal mean flow reconstruction using aero-optical observations: a synthetic investigation, 56th 3AF International Conference on Applied Aerodynamics 28 — 30 March 2022, Toulouse – France https://www.researchgate.net/publication/359619309

Nerger, L. (2022) Data assimilation for nonlinear systems with a hybrid nonlinear-Kalman ensemble transform filter. Q. J. Meteorol. Soc., 148, 620-640 doi:10.1002/qj.4221

Schachtschneider, R., J. Saynisch-Wagner, V. Klemann, M. Bagge, M. Thomas (2022) An approach for constraining mantle viscosities through assimilation of palaeo sea level data into a glacial isostatic adjustment model. Nonlinear Processes in Geophysics 29, 53-75 doi:10.5194/npg-29-53-2022

Mingari, L., A. Folch, A. T. Prata, F. Pardini, G. Macedonio, and A. Costa (2022) Data assimilation of volcanic aerosol observations using FALL3D+PDAF. Atmospheric Chemistry and Physics 21, 1773-1792 10.5194/acp-22-1773-2022

Miesner AK, S. Brune, P. Pieper, V. Koul, J. Baehr and C. Schrum (2022) Exploring the Potential of Forecasting Fish Distributions in the North East Atlantic With a Dynamic Earth System Model, Exemplified by the Suitable Spawning Habitat of Blue Whiting. Frontiers in Marine Science 8:777427. doi:10.3389/fmars.2021.777427 (unfortuntely the authors missed to cite PDAF, but the used model system (Brune et al., 2015, 2020) applied PDAF)

Koul V., S. Brune, J. Baehr, C. Schrum (2022) Impact of Decadal Trends in the Surface Climate of the North Atlantic Subpolar Gyre on the Marine Environment of the Barents Sea, Frontiers in Marine Science 8:778335. doi:10.3389/fmars.2021.778335 (unfortuntely the authors missed to cite PDAF, but the used model system (Brune et al., 2015, 2000) applied PDAF)

Strebel, L., H. R. Bogena, H Vereecken, H.-J. Hendricks Franssen (2022) Coupling the Community Land Model version 5.0 to the parallel data assimilation framework PDAF: description and applications, Geoscientific Model Development 15, 395-411 doi:10.5194/gmd-15-395-2022

Friedemann, S. (2022) Ensemble-based data assimilation for large scale simulations (Assimilation de données par ensemble pour les simulations à grandes échelles), PhD Thesis, Université Grenoble Alpes, France, link

2021

Farinotti D, Brinkerhoff DJ, Fürst JJ, Gantayat P, Gillet-Chaulet F, Huss M, Leclercq PW, Maurer H, Morlighem M, Pandit A, Rabatel A, Ramsankaran RAAJ, Reerink TJ, Robo E, Rouges E, Tamre E, van Pelt WJ J, Werder MA, Azam MF, Li H and Andreassen LM. (2021) Results from the Ice Thickness Models Intercomparison eXperiment Phase 2 (ITMIX2), Frontiers in Earth Science 8, 571923. doi:10.3389/feart.2020.571923

Tang, Q., L. Mu, H. F. Goessling, T. Semmler, L. Nerger (2021) Strongly coupled data assimilation of ocean observations into an ocean-atmosphere model, Geophys. Res. Lett, 48, e2021GL094941 doi:10.1029/2021GL094941

Shu, Q., F. Qiao, J. Liu, Z. Song, Z. Chen, J. Zhao, X. Yin, Y. Song. (2021) Arctic sea ice concentration and thickness data assimilation in the FIO-ESM climate forecast system, Acta Oceanol. Sin., 40, 65–75 doi:10.1007/s13131-021-1768-4

Luo, H., Q. Yang, L. Mu, X. Tian-Kunze, L. Nerger, M. Mazloff, L. Kaleschke, D. Chen. (2021) DASSO: a data assimilation system for the Southern Ocean that utilizes both sea-ice concentration and thickness observations, Journal of Glaciology, 67, 1235-1240 doi:10.1017/jog.2021.57

von Schuckmann K. et al (2021) Copernicus Marine Service Ocean State Report, Issue 5. J. Oper. Oce. 14:sup1, 1-185 doi:10.1080/1755876X.2021.1946240

Bruening, T., Li, X, Schwichtenberg, F., Lorkowski, I. (2021) An operational, assimilative model system for hydrodynamic and biogeochemical applicatios for German coastal waters. Hydrographische Nachrichten, 118, 6-15 doi:10.23784/HN118-01

Stepanov, V. N., Resnyanskii, Y. D., Strukov, B. S., Zelen'ko A. A. (2021) Evaluating Effects of Observational Data Assimilation in General Ocean Circulation Model by Ensemble Kalman Filtering: Numerical Experiments with Synthetic Observations. Russian Meteorology and Hydrology, 46, 94-105 doi:10.3103/S1068373921020047

Klos, A., Karegar, M. A., Kusche, J., Springer, A.(2021) Quantifying Noise in Daily GPS Height Time Series: Harmonic Function Versus GRACE-Assimilating Modeling Approaches. IEEE Geoscience and Remote Sensing Letters, 18, 627-631 doi:10.1109/LGRS.2020.2983045

Li, Z., Wang Z., Li, Y., Zhang, Y., Zhengm J., Gao, S. (2021) Evaluation of global high-resolution reanalysis products based on the Chinese Global Oceanography Forecasting System. Atmospheric and Oceanic Science Letters, online, 100032, doi:10.1016/j.aosl.2021.100032

2020

Friedemann, S., Raffin, B. An elastic framework for ensemble-based large-scale data assimilation. [Research Report] RR-9377, Inria Grenoble Rhône-Alpes, Université de Grenoble. 2020. hal-03017033v2 https://hal.archives-ouvertes.fr/hal-03017033v2

Tang, Q., Mu, L., Sidorenko, D., Goessling, H., Semmler, T., Nerger, L. (2020) Improving the ocean and atmosphere in a coupled ocean‐atmosphere model by assimilating satellite sea surface temperature and subsurface profile data. Q. J. Royal Metorol. Soc., 146, 4014-4029 doi:10.1002/qj.3885

Zheng, Y., Albergel, C., Munier, S., Bonan, B., Calvet, J.-C. (2020) An offline framework for high-dimensional ensemble Kalman filters to reduce the time to solution. Geoscientific Model Development. 13, 3607-3625 doi:10.5194/gmd-13-3607-2020

Klos, A., Karegar, M. A., Kusche, J., Springer, A. (2020) Quantifying Noise in Daily GPS Height Time Series: Harmonic Function Versus GRACE-Assimilating Modeling Approaches, IEEE Geoscience and Remote Sensing Letters, doi:10.1109/LGRS.2020.2983045

Yang, C.-Y., Liu, J., Xu, S. (2020) Seasonal Arctic Sea Ice Prediction Using a Newly Developed Fully Coupled Regional Model With the Assimilation of Satellite Sea Ice Observations, Journal of Advances in Modeling Earth Systems, 12, e2019MS001938 doi:10.1029/2019MS001938

Pardini, F., Corradini, S., Costa, A., Esposti Ongaro, T., Merucci, L., Neri, A., Stelitano, D., de' Michieli Vitturi, M. (2020) Ensemble-based data assimilation of volcanic ash clouds from satellite observations: Application to the 24 December 2018 Mt. Etna explosive eruption. Atmosphere, 11 359 doi:10.3390/atmos11040359

Brune, S., Baehr, J. (2020) Preserving the coupled atmosphere-ocean feedback in initializations of decadal climate predictios. Wiley Interdisciplinary Reviews - Climate Change, e637 doi:10.1002/wcc.637

Mu, L., Nerger, L., Tang, Q., Losa, S. N., Sidorenko, D., Wang, Q., Semmler, T., Zampieri, L., Losch, M., Goessling, H. F. (2020) Towards a data assimilation system for seamless sea ice prediction based o the AWI climate model. Journal of Advances in Modeling Earth Systems, 12, e2019MS001937 doi:10.1029/2019MS001937

Liang, X., Zhao, F., Li, C., Zhang, L., Li, B. (2020) Evaluation of ArcIOPS sea ice forecasting products during the ninth CHINARE-Arctic in summer 2018. Adv. Polar Science, 31, 14-25 doi:10.13679/j.advps.2019.0019

Naz, B. S., Kollet, S., Hendricks-Franssen, H.-J., Montzka,C. Kurtz, W. (2020) A 3 km spatially and temporally consustent European daily soil moisture reanalysis from 2000 to 2015. Scientific Data 7, 111 doi:10.1038/s41597-020-0450-6

Pradhan, H.K., Voelker, C., Losa, S.N., Bracher, A., Nerger, L. (2020) Global assimilation of ocean-color data of phytoplankton functional types: Impact of different datasets. Journal of Geophysical Research Oceans, 125, e2019JC015586 doi:10.1029/2019JC015586

Sanchez, S., Wicht, J., Bärenzung, J. (2020) Predictions of the geomagnetic secular variation based on the ensemble sequential assimilation of geomagnetic field models by dynamo simulations. Earth, Planets and Space, Vol. 72, 157 https://doi.org/10.1186/s40623-020-01279-y

Gillet-Chaulet, F. (2020) Assimilation of surface observations in a transient marine ice sheet model using an ensemble Kalman filter. The Cryosphere, 14, 811-832 doi:10.5194/tc-14-811-2020

2019

Gebler, S., Kurtz, W., Pauwels, V. R. N., Kollet, S. J., Vereecken, H., Hendricks-Franssen, H.-J. (2019) Assimilation of high-resolution soil moisutre data into an integrated terrestrial model for a small-scale head-water catchment. Water Resources Research, 55, 10358-10385 doi:10.1029/2018WR024658

Min, C., Mu, L., Yang, Q., Ricker, R., Shi, Q., Han, B., Wu, R., and Liu, J. (2019) Sea ice export through the Fram Strait derived from a combined model and satellite data set. The Cryosphere. 13, 3209–3224. doi:10.5194/tc-13-3209-2019

Springer, A., Karegar, M. A., Kusche, J., Keune, J., Kurtz, W., Kollet, S. (2019) Evidence of daily hydrological loading in GPS time series over Europe. Journal of Geodesy. 93, 2145-2153, doi:10.1007/s00190-019-01295-1

Mu L., Liang X., Yang Q., Liu J., Zheng F. (2019). Arctic Ice Ocean Prediction System: evaluating sea-ice forecasts during Xuelong’s first trans-Arctic Passage in summer 2017. Journal of Glaciology 1–9. doi:10.1017/jog.2019.55

Sanchez, S., Wicht, J., Bärenzung, J., Holschneider, M. (2019) Sequential assimilation of geomagnetic observations: perspectives for the reconstruction and prediction of core dynamics. Geophysical Journal Internations 217, 1434–1450. doi:10.1093/gji/ggz090

Naz, B. S., Kurtz, W., Montzka, C., Sharples, W., Goergen, K., Keune, J., Gao, H., Springer, A., Hendricks Franssen, H.-J., Kollet, S. (2019). Improving soil moisture and runoff simulations at 3\,km over Europe using land surface data assimilation. Hydrology and Earth System Sciences. 23 , 277-301. doi:10.5194/hess-23-277-2019

Polkova, I., Brune, S., Kadow, C., Romanova, V., Gollan, G., Baehr, J., Glowienka-Hense, R., Greatbatchm R. J., Hense, A., Koehl, A., Kroeger, J., Mueller, W. A., Pankatz, K., Stammer, D.(2019) Initialization and ensemble generation for decadal climate predictions: a comparison of different methods. JAMES 11, 149-172. doi:10.1029/2018ms001439

Goodliff, M., Bruening, T., Schwichtenberg, F., Li, X., Lindenthal, A., Lorkowski, I., Nerger, L. (2019) Temperature assimilation into a coastal ocean-biogeochemical model: Assessment of weakly and strongly-coupled data assimilation, Oce. Dyn., 69, 1217-1237, doi:10.1007/s10236-019-01299-7

Liang, X., Losch, M., Nerger, L., Mu, L., Yang, Q., Liu, C. (2019) Using sea surface temperature observations to constrain upper ocean properties in an Arctic sea ice-ocean data assimilation system. J. Geophys. Res. Oceans, 124, 4723-4743, doi:10.1029/2019JC015073

Androsov, A., Nerger, L. , Schnur, R., Schröter, J., Albertella, A., Rummel, R., Savcenko, R., Bosch, W., Skachko, S., Danilov, S. (2019) On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state. Journal of Geodesy, 93, 141-157, doi:10.1007/s00190-018-1151-1

Pradhan, H.K., Voelker, C., Losa, S.N., Bracher, A., Nerger, L. (2019) Assimilation of global total chlorophyll OC-CCI data and its impact on individual phytoplankton fields. J. Geophys. Res. Oceans, 124, 470-490, doi:10.1029/2018JC014329

Springer, A. (2019) A water storage reanalysis over the European continent: assimilation of GRACE data into a high-resolution hydrological model and validation, PhD Thesis, University of Bonn, Germany link

Kirchgessner, P. (2019) An investigation of linear and nonlinear data assimilation methods in the presence of model error, PhD Thesis, University of Bremen, Germany link

2018

Tuomi, Laura; Jun She et al. (2018): Overview of CMEMS BAL MFC Service and Developments. Proceedings of the Eigth EuroGOOS International Conference, 3–5 October 2017, Bergen, pp. 261–268

Janjic, T., N. Bormann, M. Bocquet, J. A. Carton, S. E. Cohn, S. L. Dance, S. N. Losa, N. K. Nichols, R. Potthast, J. A. Waller, P. Weston (2018) On the representation error in data assimilation. Q. J. Royal Metorol. Soc., 144, 1257-1278 doi:10.1002/qj.3130 (PDAF is not cited, but the experiments for the Baltic sea are performed using PDAF)

Shrestha, P., Kurtz, W., Vogel, G., Schulz, J.-P., Sulis, M., Hendricks Franssen, H.-J., Kollet, S., Simmern, C. (2018). Connection between root zone soil moisture and surface energy flux partitioning using modeling, observations, and data assimilation for a temperate grassland site in Germany. Journal of Geophysical Research: Biogeosciences, 123 (2018) 2839-2862 doi:10.1029/2016JG003753

Liu, Y, W. Fu (2018). Assimilating high-resolution sea surface temperature data improves the ocean forecast potential in the Baltic Sea. Ocean Science 14(2018) 525-541 doi:10.5194/os-14-525-2018 (The paper doesn't mention PDAF, but the author's confirmed that PDAF with offline-coupling to NEMO was used)

Bocher, M., A. Fournier, N. Coltice (2018). Ensemble Kalman filter for the reconstruction of the Earth's mantle circulation. Nonlin. Proc. Geophys., 25 (2018) 99-123 doi:10.5194/npg-25-99-2018

Zhang, H., W. Kurtz, S. Kollet, H. Vereecken, H.-J. Hendricks Franssen (2018). Comparison of different assimilation methodologies of groundwater levels to improve predictions of root zone soil moisture with an integrated terrestrial system model. Advances in Water Resources, 111 (2018) 224-238 http://doi.org/10.1016/j.advwatres.2017.11.003

Brune, S., Düsterhus, A., Pohlmann, H., Müller, W. A., Baehr, J. (2018). Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts. Climate Dynamics, 51 (2018) 1947–1970 https://doi.org/10.1007/s00382-017-3991-4

Sharples, W., I. Zhukov, M. Geimer, K. Goergen, S. Luehrs, T. Breuer, B. Naz, K. Kulkarni, S. Brdar, S. Kollet (2018). A run control framework to streamline profiling, porting, andtuning simulation runs and provenance trackingof geoscientific applications. Geosci. Model Dev. 11 (2018) 2875 https://doi.org/10.5194/gmd-11-2875-2018

Bogena, H. R., C. Montzka, J.A. Huisman, A. Graf, M. Schmidt, M. Stockinger, C. von Hebel, H.J. Hendricks-Franssen, J. van der Kruk, W. Tappe, A. Lücke, R. Baatz, R. Bol, J. Groha, T. Pütz, J. Jakobi, R. Kunkel, J. Sorg and H. Vereecken. (2018). The TERENO-Rur Hydrological Observatory: A Multiscale Multi-Compartment Research Platform for the Advancement of Hydrological Science. Vadose Zone Journal, 17, UNSP 180055 https://doi.org/10.2136/vzj2018.03.0055

Mu, L., Losch, M., Yang, Q., Ricker, R., Losa, S., Nerger, L., and Zhang, J. (2018) Arctic-wide sea-ice thickness estimates from combining satellite remote sensing data and a dynamic ice-ocean model with data assimilation during the CryoSat-2 period. J. Geophys. Res. Oceans, 123, 7763-7780 doi:10.1029/2018JC014316

Vetra-Carvalho, S., van Leeuwen, P. J., Nerger, L., Barth, A., Altaf, M. U., Brasseur, P., Kirchgessner, P., Beckers, J.-M. (2018) State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems. Tellus A, 70:1, 1445364 doi:10.1080/16000870.2018.1445364

Mu, L., Yang, Q., Losch, M., Losa, S.N., Ricker, R., Nerger, L., Liang, X. (2018) Improving sea ice thickness estimates by assimilating CryoSat-2 and SMOS sea ice thickness data simultaneously. Quarterly Journal of the Royal Meteorological Society. 144, 529-538 doi:10.1002/qj.3225

2017

Zhang, Y., Hou, J., Gu, J., Huang, C., Li, X. (2017). SWAT-based hydrological data assimilation system (SWAT-HDAS): Description and case application to river basin-scale hydrological predictions. Journal of Advances in Modeling Earth Systems, 9 (2017) 2863–2882 https://doi.org/10.1002/2017MS001144

Chen, Z., J. Liu, M. Song, Q. Yang, S. Xu (2017). Impacts of Assimilating Satellite Sea Ice Concentration and Thickness on Arctic Sea Ice Prediction in the NCEP Climate Forecast System. J. Climate, 30 (2017) 8429-8446 https://doi.org/10.1175/JCLI-D-17-0093.1

Irrgang, C., J. Saynisch, M. Thomas (2017). Utilizing oceanic electromagnetic induction to constrain an ocean general circulation model: A data assimilation twin experiment. Journal of Advances in Modeling Earth Systems, 9 (2017) 1703-1720 https://doi.org/10.1002/2017MS000951

Baatz, D., W. Kurtz, H.J. Hendricks Franssen, H. Vereecken, S.J. Kollet (2017). Catchment tomography - An approach for spatial parameter estimation. Advances in Water Resources 107 (2017) 147–159 https://doi.org/10.1016/j.advwatres.2017.06.006

Liang, X., Yang, Q., Nerger, L., Losa, S. N., Zhao, B., Zheng, F., Zhang, L., Wu, L. (2017) Assimilating Copernicus SST data into a pan-Arctic ice-ocean coupled model with a local SEIK filter. Journal of Atmospheric and Oceanic Technology, 34, 1985-1999 doi:10.1175/JTECH-D-16-0166.1

Kirchgessner, P., Tödter, J., Ahrens, B., Nerger, L. (2017) The smoother extension of the nonlinear ensemble transform filter. Tellus A, 69, 1327766, 2017 doi:10.1080/16000870.2017.1327766

Gebler, S. (2017) Inverse conditioning of a high resolution integrated terrestrial model at the hillslope scale: the role of input data quality and model structural errors, PhD Thesis, RWTH Aachen, Germany link

Irrang, C. (2107) Characterization of oceanic signatures in the Earth’s magnetic field in view of their applicability as ocean model constraints, PhD Thesis, Free University of Berlin, Germany link

2016

Kurtz, W., G. He, S. J. Kollet, R. M. Maxwell, H. Vereecken, H.-J. Hendrics Franssen (2016). TerrSysMP–PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surface–subsurface model. Geoscientific Model Development, 9, 1341-1360, 2016 https://doi.org/10.5194/gmd-9-1341-2016

Korthe, S., J. Tödter, B. Ahrens. (2016) Strategies for soil initialization of regional decadal climate predictions. Meteorologisch Zeitschrift, 25 (2016) 775-794 https://doi.org/10.1127/metz/2016/0729

Nerger, L., Losa, S. N., Brüning T., Janssen F. (2016) The HBM-PDAF assimilation system for operational forecasts in the North and Baltic Seas, in Operational Oceanography for Sustainable Blue Growth. Proceedings of the Seventh EuroGOOS International Conference. 28-30 October 2014, Lisbon, Portugal / Eds. E. Buch, Y. Antoniou, D. Eparkhina, G. Nolan. ISBN 978-2-9601883-1-8

Yang, Q., Losch, M., Losa, S., Jung, T., Nerger, L., Lavergne, T. (2016) Brief communication: The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation. The Cryosphere, 10, 761-774, 2016 doi:10.5194/tc-10-761-2016)

Yang, Q., Losch, M., Losa, S. N., Jung T., Nerger, L. (2016) Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice-ocean model. Journal of Atmospheric and Oceanic Technology, 33, 397-407 doi:10.1175/JTECH-D-15-0176.1

Tödter, J., Kirchgessner, P., Nerger, L., Ahrens, B. (2016) Assessment of a nonlinear ensemble transform filter for high-dimensional data assimilation. Monthly Weather Review, 144, 409-427 doi:10.1175/MWR-D-15-0073.1

Bocher, M. (2106) Reconstitution de la convection du manteau terrestre par assimilation de données séquentielle (Reconstruction of Mantle Circulation Using Sequential Data Assimilation), PhD Thesis, l’École Normale Supérieure de Lyon, France link

2015

Saynisch, J., I. Bergmann-Wolf, M. Thomas (2015). Assimilating of GRACE-derived oceanic mass distributations with a global ocean circulation model. Journal of Geodesy, 89, 121-139 https://doi.org/10.1007/s00190-014-0766-0

Brune, S., Nerger, L., Baehr, J. (2015) Assimilation of oceanic observations in a global coupled Earth system model with the SEIK filter Ocean Modelling. Ocean Modelling, 96, 254-264 doi:10.1016/j.ocemod.2015.09.011

Yang, Q., Losa, S. N., Losch, M., Jung, T., Nerger, L. (2015) The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction. Quarterly Journal of the Royal Meteorological Society, 141, 2314-2323 doi:10.1002/qj.2523

Nerger, L. (2015) On serial observation processing in localized ensemble Kalman filters. Monthly Weather Review, 143, 1554-1567 doi:10.1175/MWR-D-14-00182.1

Yang, Q., Losa, S. N., Losch, M., Liu, J. , Zhang, Z., Nerger, L., Yang, H. (2015) Assimilating summer sea ice concentration into a coupled ice-ocean model using a local SEIK filter. Annals of Glaciology, 56(69), 39-44, doi:10.3189/2015AoG69A740

Yang, Q. (2015) Assimilating Arctic sea ice observations into a coupled ice-ocean model with a local SEIK filter and different uncertainty estimates, PhD Thesis, University of Bremen, Germany link

Toedter, J. (2015) Derivation and characterization of a new filter for nonlinear high-dimensional data assimilation, PhD Thesis, Goethe University Frankfurt am Main, Germany link

2014

Kirchgessner, P., Nerger, L., Bunse-Gerstner, A. (2014) On the choice of an optimal localization radius in ensemble Kalman filter methods. Monthly Weather Review, 142, 2165-2175, doi:10.1175/MWR-D-13-00246.1

Losa, S.N., Danilov, S., Schröter, J., Janjic, T., Nerger, L., Janssen, F. (2014). Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Part 2. Sensitivity of the forecast's skill to the prior model error statistics. Journal of Marine Systems, 129, 259-270 doi:10.1016/j.jmarsys.2013.06.011

Nerger, L., Schulte, S., Bunse-Gerstner, A. (2014) On the influence of model nonlinearity and localization on ensemble Kalman smoothing. Quarterly Journal of the Royal Meteorological Society, 140, 2249-2259, doi:10.1002/qj.2293

Yang, Q., Losa, S. N., Losch, M., Tian-Kunze, X., Nerger, L., Liu, J., Kaleschke, L., Zhang, Z. (2014) Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter. Journal of Geophysical Research-Oceans, 119, 6680-6692, doi:10.1002/2014JC009963

2013

Fournier, A., Nerger, L., Aubert, J. (2013). An ensemble Kalman filter for the time-dependent analysis of the geomagnetic field. Geochemistry, Geophysics, Geosystems, 14, 4035-4043 doi:10.1002/ggge.20252

2012

Janjić, T., Schröter, J., Savcenko, R., Bosch, W., Albertella, A., Rummel, R., Klatt, O. (2012). Impact of combining GRACE and GOCE gravity data on ocean circulation estimates. Ocean Science, 8, 65-79 doi:10.5194/os-8-65-2012.

Janjić, T., Schröter, J., Albertella, A., Bosch, W., Rummel, R., Savcenko, R., Schwabe, J., Scheinert, M. (2012). Assimilation of geodetic dynamic ocean topography using ensemble based Kalman filter. Journal of Geodynamics, 59-60, pp. 92-98 doi:10.1016/j.jog.2011.07.001.

Saynisch, J., Thomas, M. (2012). Ensemble Kalman‐Filtering of Earth rotation observations with aglobal ocean model. Journal of Geodynamics, 62, 24‐29 doi:10.1016/j.jog.2011.10.003

Nerger, L., Janjić, T., Schröter, J., Hiller, W. (2012). A unification of ensemble square root Kalman filters. Monthly Weather Review, 140, 2335-2345. doi:10.1175/MWR-D-11-00102.1

Nerger, L., Janjić, T., Schröter, J., Hiller, W. (2012). A regulated localization scheme for ensemble-based Kalman filters. Quarterly Journal of the Royal Meteorological Society, 138, 802-812. doi:10.1002/qj.945.

Losa, S.N., Danilov, S., Schröter, J., Nerger, L., Massmann, S., Janssen, F. (2012). Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data. Journal of Marine Systems, 105-108, pp. 152-162. doi:10.1016/j.jmarsys.2012.07.008

2011

Janjić, T., Nerger, L., Albertella, A., Schröter, J., Skachko, S. (2011). On domain localization in ensemble based Kalman filter algorithms. Monthly Weather Review, 139, 2046-2060 doi:10.1175/2011MWR3552.1.

2009

Rollenhagen, K., Timmermann, R., Janjic, T., Schröter, J., Danilov, S.(2009). Assimilation of sea ice motion in a Finite Element Sea Ice Model, Journal of Geophysical Research, 114, C05007, doi:10.1029/2008JC005067.

2008

Nerger, L., Gregg, W. W.(2008). Improving Assimilation of SeaWiFS Data by the Application of Bias Correction with a Local SEIK Filter, Journal of Marine Systems, 73 (2008) 87-102, doi:10.1016/j.jmarsys.2007.09.007.

Skachko, S., Danilov, S., Janjic, T., Schröter, J., Sidorenko, D., Savcenko, R., Bosch, W.(2008). Sequential assimilation of multi-mission dynamical topography into a global finite-element ocean model, Ocean Science, 4, 307-318, doi:10.5194/os-4-307-2008.

Rollenhagen, K. (2008) Data Assimilation in a Regional Finite Element Sea-Ice Model for the Arctic - Application of the Singular Evolutive Interpolated Kalman Filter, PhD Thesis, University of Bremen, Germany link

2007

Nerger, L., Gregg, W. W.(2007). Assimilation of SeaWiFS data into a global ocean-biogeochemical model using a local SEIK Filter, Journal of Marine Systems, 68, 237-254, doi:10.1016/j.jmarsys.2006.11.009.

Nerger, L., Danilov, S., Kivman, G., Hiller, W., Schröter, J.(2007). Data assimilation with the Ensemble Kalman Filter and the SEIK filter applied to a finite element model of the North Atlantic, Journal of Marine Systems, 65(1/4), 288-298., doi:10.1016/j.jmarsys.2005.06.009.

2006

Nerger, L., Danilov, S., Hiller, W., Schröter, J.(2006). Using sea-level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter, Ocean Dynamics, 56(5/6), 634-649., doi:10.1007/s10236-006-0083-0.

2005

Nerger, L., Hiller, W., Schröter, J.(2005). A Comparison of Error Subspace Kalman Filters, Tellus series A-Dynamic Meteorology and Oceanography, 57A(5), 715-735, doi:10.1111/j.1600-0870.2005.00141.x.

2004

Nerger, L.(2004). Parallel Filter Algorithms for Data Assimilation in Oceanography, PhD Thesis, University of Bremen, 2004 (Reports on Polar and Marine Research, 487, 174 pp.)