

PDAF – Community Software for Ensemble-based Data Assimilation

Lars Nerger

Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research Bremerhaven, Germany

> HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

ISDA-Online, January 14, 2022

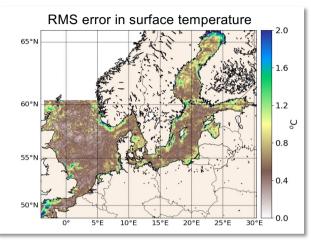
PDAF – Parallel Data Assimilation Framework

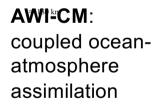
A universal tool for ensemble data assimilation ...

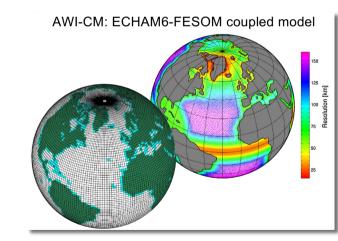
- provide support for parallel ensemble forecasts
- provide assimilation methods (solvers) fully-implemented & parallelized
- provide tools for observation handling and for diagnostics
- easily useable with (probably) any numerical model
- a program library (PDAF-core) plus additional functions
- run from notebooks to supercomputers (Fortran, MPI & OpenMP)
- usable for real assimilation applications and to study assimilation methods
- welcoming community contributions

Open source: Code, documentation, and tutorial available at

http://pdaf.awi.de


L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118


PDAF Application Examples


At AWI:

HBM-ERGOM:

coupled physics/ biogeochemistry coastal assimilation in nested model

 1.85×1.85

External applications & users, like

Operational uses:

- Germany: North/Baltic Seas (HBM model)
- Europe: Copernicus Baltic forecasting center (NEMO)
- China: Arctic ice-ocean prediction system (MITgcm)

Ocean and climate models (research applications)

- NEMO/AGRIF
- SCHISM/ESMF
- MPI-ESM
- COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport modeling system)

Beyond ocean

- TSMP-PDAF (Terrestrial Systems Modeling Platform)
- TIE-GCM (Thermosphere lonosphere Electrodynamics GCM)
- VILMA (Viscoelastic Lithosphere and Mantle Model)
- Parody (Geodynamo model)
- **HYSPLIT** (Volcanic Ash Transport and Dispersion model)
- ... more

Lars Nerger et al. - PDAF - community software for DA

Data Assimilation

Framework

PDAF: User-friendliness

Goal: Enable easy and fast setup of a DA system and allow for extension to fully featured system while ensuring high efficiency and scalability

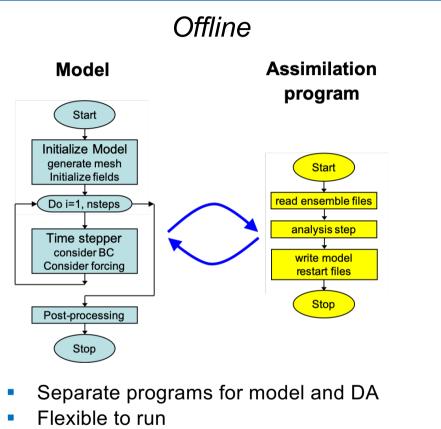
Assumption: Users know their model

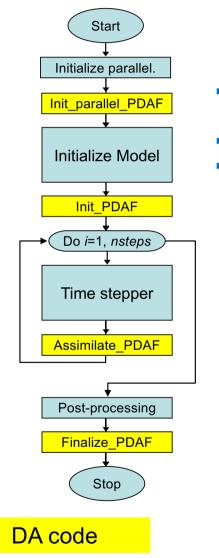
Iet users implement DA system in model context

For users, model is not just a time-stepping operator

→ let users extend their model for data assimilation

Keep code simple for the user side:

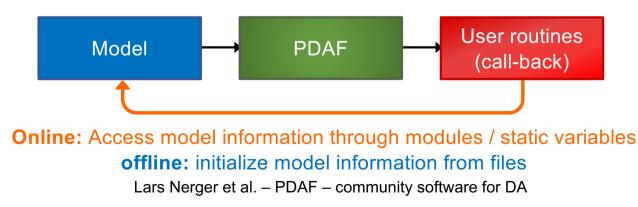

- → Define subroutine interfaces to DA code based on arrays (also simplifies interaction with languages like C/C++/Python)
- → No object-oriented programming (most models don't use it; most model developers don't know it; many objects we would only have for observations – see later)
- → Users directly implement case-specific routines (no indirect description (XML, YAML, ...) of e.g. observation layout)


Coupling Model and Assimilation Code: 2 Variants

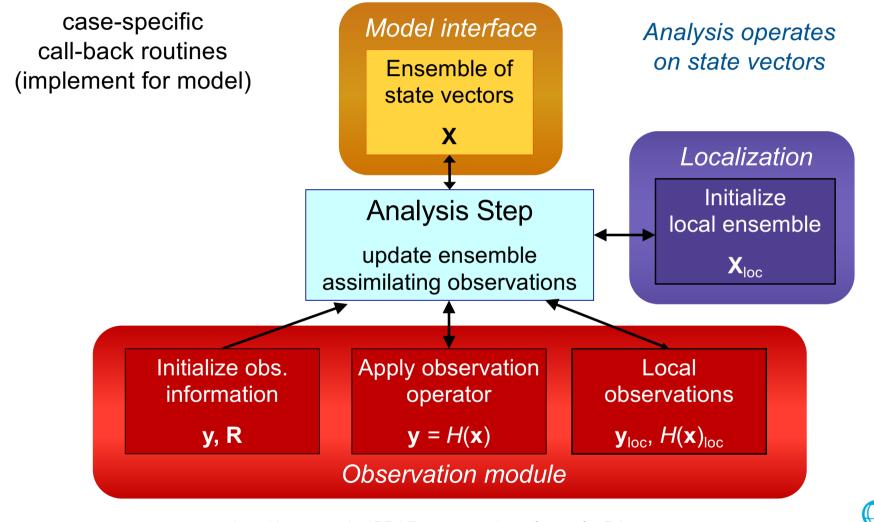
Model code

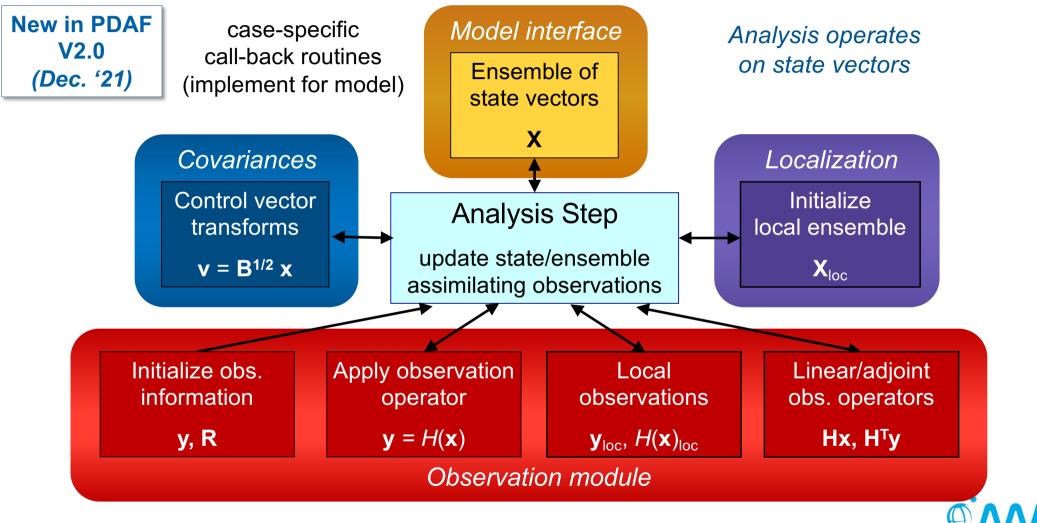
 Needs frequent model restarts and file output (less efficient than online coupling)

Online

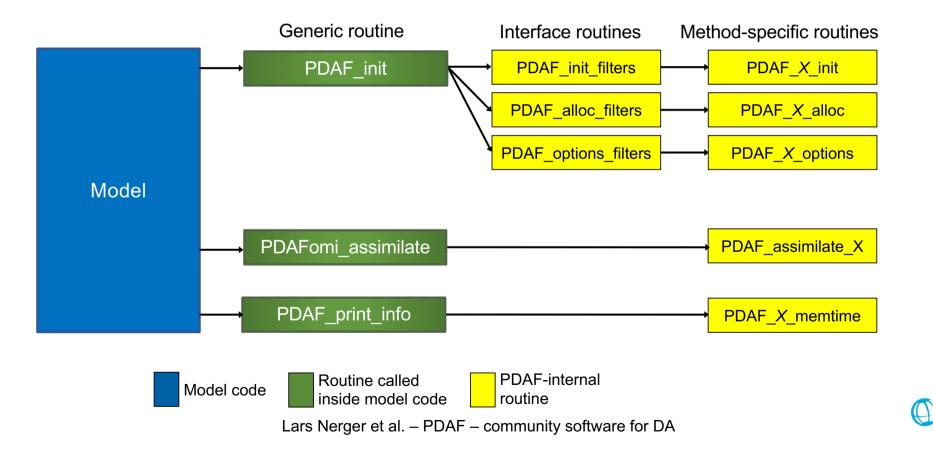

- Augment model with DA functionality
- Insert 4 subroutine calls
- Very efficient & highly scalable

PDAF interface structure


- Model-sided Interface: Defined calls to PDAF routines (called by driver program for offline coupling)
- Case-related Interface: User-supplied call-back routines for elementary operations:
 - transfers between model fields and ensemble of state vectors
 - observation-related operations
- Internal Interface: Connect to data assimilation methods
- User supplied routines can be implemented as routines of the model and can share data with it (low abstraction level)

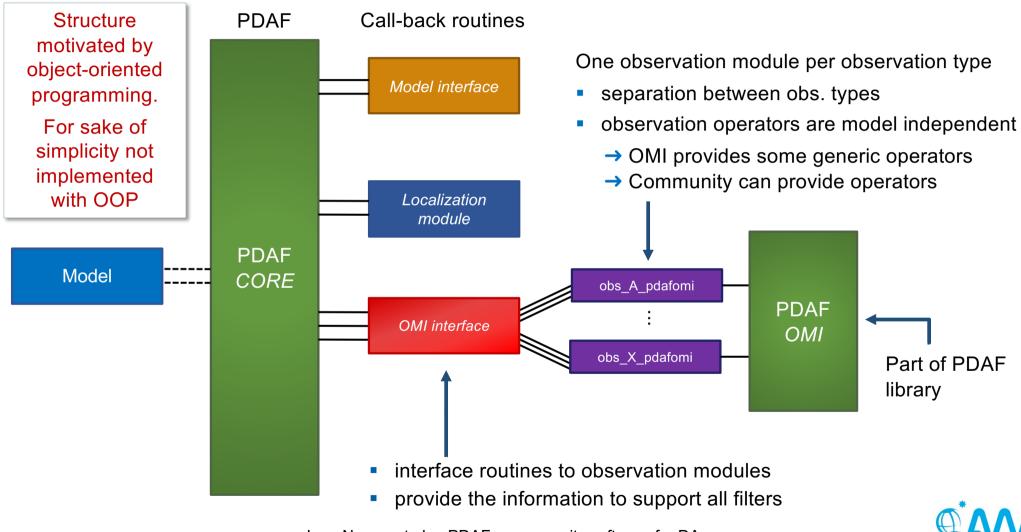

Implementing the Ensemble Filter Analysis Step

Implementing the 3D (Ensemble) Variational Analysis Step



Internal interface of PDAF

- PDAF has a framework structure for ensemble forecasts
- Internal interface to connect filter algorithms
- Easy addition of new DA methods by adding



Recent and current developments

OMI: Code structure (Observation Module Infrastructure)

PDAFParallel

Data Assimilation

Framework

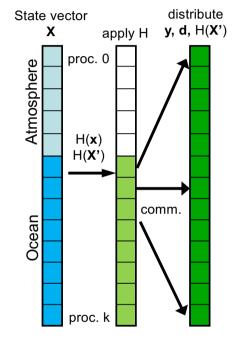
Lars Nerger et al. - PDAF - community software for DA

11

Support for Strongly Coupled DA

Strongly coupled DA: Assimilate observation of component A into component B


achieved in PDAF by adapting MPI communicator for the filter:


- → joint state vector decomposed over the filter processes
- → Provide observation operator that only performs MPI communication (independent of model coupler)

need innovation $\mathbf{d} = H(\mathbf{x}) - \mathbf{y}$ and observed ensemble perturbations $H(\mathbf{X'})$

Observation operator H links different compartments

- 1. Compute part of d and H(X') on process 'owning' the observation
- 2. Communicate **d** and H(**X**') to processes for which observation is within localization radius

Observation handling in strongly coupled DA

PDAF code: DA Algorithms and models

PDAF originated from comparison studies of different filters

Ensemble Filters and smoothers - global and localized

- EnKF (Evensen, 1994 + perturbed obs.)
- (L)ETKF (Bishop et al., 2001/Hunt et al. 2007)
- ESTKF (Nerger et al., 2012)
- NETF (Toedter & Ahrens, 2015)
- Particle filter
- EnOI mode

Model bindings

- MITgcm
- AWI-CM / FESOM

Toy models (full implementations with PDAF)

- Lorenz-96 / Lorenz-63
- Lorenz-2005 models II and III

Community provided:

SCHISM/ESMF TerrSysMP-PDAF (incremental with control variable

3D-Var schemes

transformation)

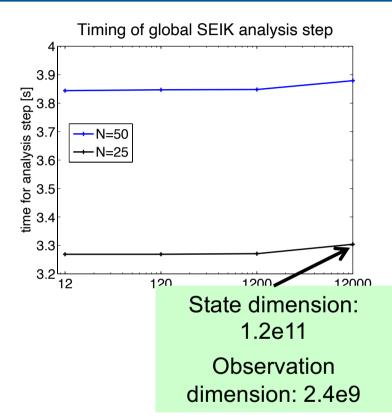
- 3D-Var with parameterized covar.
- 3D Ensemble Var
- Hybrid 3D-Var

Upcoming:

Hybrid NETF/LETKF

Upcoming:

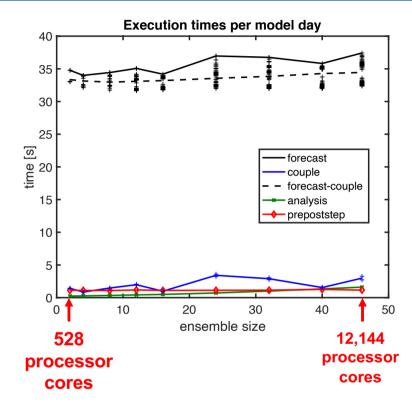
- NEMO 4 (U Reading)
- GOTM/FABM (BB ApS)



PDAF Capability: Very big test case

- Simulate a "model"
- Choose an ensemble
 - state vector per processor: 10⁷
 - observations per processor: 2.10⁵
 - Ensemble size: 25
 - 2GB memory per processor
- Apply analysis step for different processor numbers
 - 12 120 1200 12000
- Very small increase in analysis time (~1%) (Ideal would be constant time)
- Didn't try to run a real ensemble of largest state size (no model yet)
- Latest test: analysis step using 57600 processor cores; state dimension 8.6e11, number of observations 1.7e10

Scalability (Climate model AWI-CM; DA into ocean)


Daily assimilation of sea surface temperature

- MPI-tasks (each model instance): Atmosphere (ECHAM): 72 / Ocean (FESOM): 192
- Vary ensemble size
- Increasing forecast time with growing ensemble size (11%; more parallel communication; worse placement)
- some variability in forecast time over ensemble tasks (process placement, network)

Important factors for good performance

- Need optimal distribution of programs over compute nodes/racks (here set up as ocean/atmosphere pairs)
- Avoid conflicts in IO (Best performance when each AWI-CM task runs in separate directory)

Nerger et al., GMD (2020), doi:10.5194/gmd-13-4305-2020

Requirements

- Fortran compiler
- MPI library
- BLAS & LAPACK
- make
- PDAF is at least tested (often used) on various computers:
 - Notebook & Workstation: MacOS, Linux (gfortran)
 - Cray XC30/40 & CS400 (Cray ftn and ifort)
 - NEC SX-Aurora TSUBASA vector computer
 - ATOS Bull Sequana X (ifort)
 - HPE Cray Apollo (Fujitsu A64FX ARM processor)

Summary - PDAF: A tool for data assimilation

- a program library for ensemble modeling and data assimilation
- provides support for ensemble forecasts, DA diagnostics, and fully-implemented filter and smoother algorithms
- makes excellent use of supercomputers
- separation of concerns: model, DA methods, observations
- easy to couple to models and to program case-specific routines
- easy to add new DA methods good for research on algorithms
- efficient for research and operational use
- community code for DA methods and observations

Open source: Code, documentation, and tutorial available at

http://pdaf.awi.de

PDAF adds DA to models

Couple model and PDAF within days

Get DA capability in a month

Extend to full multivar. system

Run DA in known environment

Access new DA methods by updating PDAF

©*AV/

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118