Changes between Initial Version and Version 1 of PDAFomi_diag_get_ivar


Ignore:
Timestamp:
Mar 23, 2025, 8:37:08 AM (11 days ago)
Author:
lnerger
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • PDAFomi_diag_get_ivar

    v1 v1  
     1= PDAFomi_diag_get_ivar =
     2
     3This page documents the routine `PDAFomi_diag_get_ivar` of PDAF, which was introduced with PDAF V3.0. This is part of the PDAF-OMI observation diagnostics module.
     4
     5The routine returns a pointer to a vector of the inverse observatino error variances for the specified observation type (`id_obs`).
     6
     7Usually all PDAFomi_diag routines are called in `prepoststep_pdaf` where the observation information can be retrieved and analyzed.
     8
     9The interface is the following:
     10{{{
     11  SUBROUTINE PDAFomi_diag_get_ivar(id_obs, dim_obs_p_diag, ivar_p_ptr)
     12}}}
     13with the following arguments:
     14{{{
     15    INTEGER, INTENT(in) :: id_obs                    !< Index of observation type to return
     16    INTEGER, INTENT(out) :: dim_obs_p_diag           !< Observation dimension
     17    REAL, POINTER, INTENT(out) :: ivar_p_ptr(:)      !< Pointer to inverse observation error variances
     18}}}
     19
     20**Notes:**
     21 * In case of a parallelized model, the vector `ivar_p_prt contains the observed ensemble mean for the process-sub-domain
     22 * In Fortran user code the obsevation pointer should be declared in the form[[BR]] `REAL, POINTER :: ivar_p_ptr(:)`[[BR]] It does not need to be allocated. The target vector has the length `dim_obs_p_diag`
     23 * If the observation diagnostics have not be activated by using [wiki:PDAFomi_set_obs_diag] the pointer will not be set and `dim_obs_diag=0` will be returned. This value can be checked before assessing the pointer array
     24 * If the feature `thisobs%inno_omit` is used (see [wiki:PDAFomi_additional_functionality], the inverse variance of the omitted observations will show the small value set by `inno_omit`. One can use this information to exclude such observations when analyzing differences between observations and observed ensemble.
     25
     26