Changes between Initial Version and Version 1 of ImplementAnalysis_3DEnVar


Ignore:
Timestamp:
Dec 9, 2021, 8:00:29 AM (2 years ago)
Author:
lnerger
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • ImplementAnalysis_3DEnVar

    v1 v1  
     1= Implementation of the Analysis Step for 3D-Var with OMI =
     2
     3{{{
     4#!html
     5<div class="wiki-toc">
     6<h4>Implementation Guide</h4>
     7<ol><li><a href="ImplementationGuide">Main page</a></li>
     8<li><a href="AdaptParallelization">Adaptation of the parallelization</a></li>
     9<li><a href="InitPdaf">Initialization of PDAF</a></li>
     10<li><a href="ModifyModelforEnsembleIntegration">Modifications for ensemble integration</a></li>
     11<li><a href="OMI_ImplementationofAnalysisStep">Implementation of the analysis step with OMI</a></li>
     12<ol>
     13<li><a href="ImplementAnalysisGlobal">Implementation for Global Filters</a></li>
     14<li><a href="ImplementAnalysisLocal">Implementation for Local Filters</a></li>
     15<li><a href="ImplementAnalysislenkfOmi">Implementation for LEnKF</a></li>
     16<li>Implementation for 3D-Var</li>
     17<li><a href="ImplementAnalysis_3DEnVar">Implementation for 3D-EnVar</a></li>
     18<li><a href="ImplementAnalysis_Hyb3DVar">Implementation for hybrid 3D-Var</a></li>
     19<li><a href="PDAF_OMI_Overview">PDAF-OMI Overview</a></li>
     20</ol>
     21<li><a href="AddingMemoryandTimingInformation">Memory and timing information</a></li>
     22<li><a href="EnsembleGeneration">Ensemble Generation</a></li>
     23<li><a href="DataAssimilationDiagnostics">Diagnostics</a></li>
     24</ol>
     25</div>
     26}}}
     27
     28[[PageOutline(2-3,Contents of this page)]]
     29
     30== Overview ==
     31
     32With Version 2.0 with introduced 3D variational assimilation methods to PDAF. There are genenerally three different variants: parameterized 3D-Var, 3D Ensemble Var, and hybrid (parameterized + ensemble) 3D-Var.
     33
     34This page describes the implementation of the analysis step for the parameterized 3D-Var using PDAF-OMI.
     35
     36For the analysis step of 3D-Var we need different operations related to the observations. These operations are requested by PDAF by call-back routines supplied by the user and provided in the OMI structure. The names of the routines that are provided by the user are specified in the call to the routine `PDAFomi_assimilate_3dvar` in the fully-parallel implementation (or `PDAFomi_put_state_3dvar` for the 'flexible' implementation) that was discussed before. With regard to the parallelization, all these routines (except `U_collect_state`, `U_distribute_state`, and `U_next_observation`) are executed by the filter processes (`filterpe=.true.`) only.
     37
     38For completeness we discuss here all user-supplied routines that are specified in the interface to `PDAFomi_assimilate_3dvar`. Thus, some of the user-supplied routines that are explained on the page describing the modification of the model code for the ensemble integration are repeated here.
     39
     40
     41== `PDAFomi_assimilate_3dvar` ==
     42
     43The general aspects of the filter (or solver) specific routines `PDAF_assimilate_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration] and its sub-page on [InsertAnalysisStep inserting the analysis step]. The routine is used in the fully-parallel implementation variant of the data assimilation system. When the 'flexible' implementation variant is used, the routines `PDAF_put_state_*` is used as described further below. Here, we list the full interface of the routine. Subsequently, the user-supplied routines specified in the call is explained.
     44
     45The interface for using the parameterized 3D-Var is:
     46{{{
     47  SUBROUTINE PDAFomi_assimilate_3dvar(collect_state_pdaf, distribute_state_pdaf, &
     48                                 U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     49                                 U_cvt, U_cvt_adj, U_obs_op_lin_pdafomi, obs_op_adj_pdafomi, &
     50                                 prepoststep_pdaf, next_observation_pdaf, outflag)
     51}}}
     52with the following arguments:
     53 * [#U_collect_statecollect_state_pdaf.F90 U_collect_state]: The name of the user-supplied routine that initializes a state vector from the array holding the ensemble of model states from the model fields. This is basically the inverse operation to `U_distribute_state` used in `PDAF_get_state` as well as here.
     54 * [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]:  The name of a user supplied routine that initializes the model fields from the array holding the ensemble of model state vectors.
     55 * [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]: The name of the user-supplied routine that initializes the observation information and provides the size of observation vector
     56 * [#U_cvtcvt_pdaf.F90 U_cvt]: The name of the user-supplied routine that applies the control-vector transformation (square-root of the B-matrix) on some control vector to obtain a state vector.
     57 * [#U_cvt_adjcvt_adj_pdaf.F90 U_cvt_adj]: The name of the user-supplied routine that applies the adjoint control-vector transformation (with square-root of the B-matrix) on some state vector to obtain the control vector.
     58 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi]: The name of the user-supplied routine that acts as the observation operator on some state vector
     59 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the linearized observation operator on some state vector
     60 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the adjoint observation operator on some state vector
     61 * [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep]: The name of the pre/poststep routine as in `PDAF_get_state`
     62 * [#U_next_observationnext_observation.F90 U_next_observation]: The name of a user supplied routine that initializes the variables `nsteps`, `timenow`, and `doexit`. The same routine is also used in `PDAF_get_state`.
     63 * `status`: The integer status flag. It is zero, if `PDAFomi_assimilate_global` is exited without errors.
     64
     65
     66== `PDAFomi_put_state_global` ==
     67
     68When the 'flexible' implementation variant is chosen for the assimilation system, the routine `PDAFomi_put_state_global` has to be used instead of `PDAFomi_assimilate_global`. The general aspects of the filter specific routines `PDAF_put_state_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration]. The interface of the routine is identical with that of `PDAF_assimilate_global` with the exception the specification of the user-supplied routines `U_distribute_state` and `U_next_observation` are missing.
     69
     70The interface when using one of the global filters is the following:
     71{{{
     72  SUBROUTINE PDAFomi_assimilate_3dvar(collect_state_pdaf, &
     73                                 U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     74                                 U_cvt, U_cvt_adj, U_obs_op_lin_pdafomi, obs_op_adj_pdafomi, &
     75                                 prepoststep_pdaf, outflag)
     76}}}
     77
     78== User-supplied routines ==
     79
     80Here all user-supplied routines are described that are required in the call to `PDAFomi_assimilate_3dvar`. For some of the generic routines, we link to the page on [ModifyModelforEnsembleIntegration modifying the model code for the ensemble integration].
     81
     82To indicate user-supplied routines we use the prefix `U_`. In the template directory `templates/` as well as in the tutorial implementations in `tutorial/` these routines exist without the prefix, but with the extension `_pdaf.F90`. The user-routines relating to OMI are collected in the file `callback_obs_pdafomi.F90`. In the section titles below we provide the name of the template file in parentheses.
     83
     84In the subroutine interfaces some variables appear with the suffix `_p`. This suffix indicates that the variable is particular to a model sub-domain, if a domain decomposed model is used. Thus, the value(s) in the variable will be different for different model sub-domains.
     85
     86
     87=== `U_collect_state` (collect_state_pdaf.F90) ===
     88
     89This routine is independent of the filter algorithm used.
     90
     91See the page on [InsertAnalysisStep#U_collect_statecollect_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     92
     93
     94=== `U_distribute_state` (distribute_state_pdaf.F90) ===
     95
     96This routine is independent of the filter algorithm used.
     97
     98See the page on [InsertAnalysisStep#U_distribute_statedistribute_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     99
     100
     101=== `U_init_dim_obs_pdafomi` (callback_obs_pdafomi.F90) ===
     102
     103This is a call-back routine for PDAF-OMI initializing the observation information. The routine just calls a routine from the observation module for each observation type.
     104
     105See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     106
     107
     108
     109=== `U_obs_op_pdafomi` (callback_obs_pdafomi.F90) ===
     110
     111This is a call-back routine for PDAF-OMI applying the observation operator to the state vector. The routine calls a routine from the observation module for each observation type.
     112
     113See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     114
     115
     116
     117
     118=== `U_cvt` (cvt_pdaf.F90) ===
     119
     120The interface for this routine is:
     121{{{
     122SUBROUTINE cvt_pdaf(iter, dim_p, dim_cvec, cv_p, Vv_p)
     123
     124  INTEGER, INTENT(in) :: iter           ! Iteration of optimization
     125  INTEGER, INTENT(in) :: dim_p          ! PE-local observation dimension
     126  INTEGER, INTENT(in) :: dim_cvec       ! Dimension of control vector
     127  REAL, INTENT(in)    :: cv_p(dim_cvec) ! PE-local control vector
     128  REAL, INTENT(inout) :: Vv_p(dim_p)    ! PE-local result vector (state vector increment)
     129}}}
     130
     131The routine is called during the analysis step during the iterative minimization of the cost function.
     132It has to apply the control vector transformation to the control vector and return the transformed result vector. Usually this transformation is the multiplication with the square-root of the background error covariance matrix '''B'''.
     133
     134If the control vector is decomposed in case of parallelization it first needs to the gathered on each processor and afterwards the transformation is computed on the potentially domain-decomposed state vector.
     135
     136
     137=== `U_cvt_adj` (cvt_adj_pdaf.F90) ===
     138
     139The interface for this routine is:
     140{{{
     141SUBROUTINE cvt_adj_pdaf(iter, dim_p, dim_cvec, Vv_p, cv_p)
     142
     143  INTEGER, INTENT(in) :: iter           ! Iteration of optimization
     144  INTEGER, INTENT(in) :: dim_p          ! PE-local observation dimension
     145  INTEGER, INTENT(in) :: dim_cvec       ! Dimension of control vector
     146  REAL, INTENT(in)    :: Vv_p(dim_p)    ! PE-local result vector (state vector increment)
     147  REAL, INTENT(inout) :: cv_p(dim_cvec) ! PE-local control vector
     148}}}
     149
     150The routine is called during the analysis step during the iterative minimization of the cost function.
     151It has to apply the adjoint control vector transformation to a state vector and return the control vector. Usually this transformation is the multiplication with transposed of the square-root of the background error covariance matrix '''B'''.
     152
     153If the state vector is decomposed in case of parallelization one needs to take care that the application of the trasformation is complete. This usually requries a comminucation with MPI_Allreduce to obtain a global sun.
     154
     155
     156
     157=== `U_obs_op_lin_pdafomi` (callback_obs_pdafomi.F90) ===
     158
     159This is a call-back routine for PDAF-OMI applying the linearized observation operator to the state vector. The routine calls a routine from the observation module for each observation type. If the full observation operator is lineaer the same operator can be used here.
     160
     161See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     162
     163
     164=== `U_obs_op_adj_pdafomi` (callback_obs_pdafomi.F90) ===
     165
     166This is a call-back routine for PDAF-OMI applying the adjoint observation operator to some vector inthe observation space. The routine calls a routine from the observation module for each observation type.
     167
     168See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     169
     170
     171=== `U_prepoststep` (prepoststep_ens_pdaf.F90) ===
     172
     173The routine has already been described for modifying the model for the ensemble integration and for inserting the analysis step.
     174
     175See the page on [InsertAnalysisStep#U_prepoststepprepoststep_ens_pdaf.F90 inserting the analysis step] for the description of this routine.
     176
     177
     178=== `U_next_observation` (next_observation_pdaf.F90) ===
     179
     180This routine is independent of the filter algorithm used.
     181
     182See the page on [InsertAnalysisStep#U_next_observationnext_observation_pdaf.F90 inserting the analysis step] for the description of this routine.
     183
     184
     185== Execution order of user-supplied routines ==
     186
     187The user-supplied routines are essentially executed in the order they are listed in the interface to `PDAFomi_assimilate_3dvar`. The order can be important as some routines can perform preparatory work for later routines. For example, `U_init_dim_obs_pdafomi` prepares an index array that provides the information for executing the observation operator in `U_obs_op_pdafomi`. How this information is initialized is described in the documentation of OMI.
     188
     189Before the analysis step is called the following routine is executed:
     190 1. [#U_collect_statecollect_state_pdaf.F90 U_collect_state]
     191
     192The analysis step is executed when the ensemble integration of the forecast is completed. During the analysis step the following routines are executed in the given order:
     193 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the forecast ensemble, called with negative value of the time step)
     194 1. [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]
     195 1. [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi] (multiple calls, one for each ensemble member)
     196
     197Inside the analysis step the interative optimization is computed. This involves the repeated call of the routines:
     198 1. [#U_cvtcvt_pdaf.F90 U_cvt]
     199 1. [#U_obs_op_linpdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]
     200 1. [#U_obs_op_adjpdafomicallback_obs_pdafomi.F90 U_obs_op_adj_pdafomi]
     201 1. [#U_cvt_adjcvt_adj_pdaf.F90 U_cvt_adj]
     202
     203After the iterative optimization the following routines are executes to complte the analysis step:
     204 1. [#U_cvtcvt_pdaf.F90 U_cvt] (Call to the control vector transform to compute the final state vector increment
     205 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the analysis ensemble, called with (positive) value of the time step)
     206
     207In case of the routine `PDAFomi_assimilate_global`, the following routines are executed after the analysis step:
     208 1. [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]
     209 1. [#U_next_observationnext_observation_pdaf.F90 U_next_observation]