Changes between Initial Version and Version 1 of Implement3DVarAnalysisPDAF3Universal


Ignore:
Timestamp:
May 26, 2025, 2:36:02 PM (7 days ago)
Author:
lnerger
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • Implement3DVarAnalysisPDAF3Universal

    v1 v1  
     1= Implementation of the Analysis Step of 3D-Var using the universal PDAF3 interface =
     2
     3{{{
     4#!html
     5<div class="wiki-toc">
     6<h4>Implementation Guide - Analysis Step</h4>
     7<ol><li>Implementing the analysis step</li>
     8<ol>
     9<li><b>Ensemble filters</b></li>
     10<ol>
     11<li> <a href="ImplementFilterAnalysisOverviewPDAF3"> General overview for ensemble filters</a></li>
     12<li><a href="ImplementAnalysisPDAF3Universal">Universal interface </a></li>
     13<li><a href="ImplementAnalysisPDAF3UniversalLocal">Universal interface using g2l/l2g_state</a></li>
     14<li><a href="ImplementanalysisPDAF3Gloval">Interface specific for global filters</a></li>
     15</ol>
     16<li><b>3D-Var methods</b></li>
     17<ol>
     18<li> <a href="Implement3DVarAnalysisOverviewPDAF3"> General overview for 3D-Var methods</a></li>
     19<li><a href="Implement3DVarAnalysisPDAF3Universal">Universal interface for 3D-Var</a></li>
     20<li><a href="Implement3DVarAnalysisPDAF3_3DVar">Implementation for 3D-Var</a></li>
     21<li><a href="Implement3DVarAnalysisPDAF3_3DEnVar">Implementation for 3D Ensemble Var</a></li>
     22<li><a href="Implement3DVarAnalysisPDAF3_Hyb3DVar">Implementation for Hybrid 3D-Var</a></li>
     23</ol>
     24
     25<li><a href="nondiagonal_observation_error_covariance_matrices_PDAF3">Using nondiagonal R-matrices</a></li>
     26<li><a href="PDAF_OMI_Overview">PDAF-OMI Overview</a></li>
     27</ol>
     28</div>
     29}}}
     30
     31
     32[[PageOutline(2-3,Contents of this page)]]
     33
     34== Overview ==
     35
     36This page describes the recommended implementation of the analysis step for the different 3D-Var schemes using the universal interface of PDAF3.
     37
     38There are genenerally three different variants of 3D-Var provided by PDAF: parameterized 3D-Var, 3D Ensemble Var, and hybrid (parameterized + ensemble) 3D-Var. All can be called using the universal interface routines described here.
     39
     40For the analysis step of 3D-Var we need different operations related to the observations. These operations are requested by PDAF by call-back routines supplied by the user and provided in the OMI structure. The names of the routines that are provided by the user are specified in the call to the routine `PDAF3_assimilate_3dvar_all` in the online mode of PDAF or `PDAF3_assim_offline_3dvar_all` for the offline mode. With regard to the parallelization, all these routines (except `U_collect_state`, `U_distribute_state`, and `U_next_observation`) are executed by the filter processes (`filterpe=.true.`) only.
     41
     42The universal interface has more arguments than the specific interfaces for the parameterized 3D-Var or the 3D ensemble Var methods. It is useful if one implements both the 3D-Var with parameterized covariances and rhe 3D ensemble Var. The hybrid 3D-Var using the LESTKF is always called using this unversal interface.
     43
     44The different 3D-Var methods in PDAF were explained on the [wiki:Implement3DVarAnalysisOverview page providing the verview of the Analysis Step for 3D-Var Methods]. Depending the type of 3D-Var, the background covariance matrix '''B''' is represented either in a parameterized form, by an ensemble, or by a combination of both. The 3D-Var methods that use an ensemble need to transform the ensemble perturbations using an ensemble Kalman filter. PDAF uses for this the error-subspace transform filter ESTKF. There are two variants: The first uses the localized filter LESTKF, while the second uses the global filter ESTKF.
     45
     46For completeness we discuss here all user-supplied routines that are specified in the interface to `PDAFomi_assimilate_hyb3dvar_X`. Thus, some of the user-supplied routines that are explained on the page describing the modification of the model code for the ensemble integration are repeated here.
     47
     48
     49== Analysis Routines ==
     50
     51The general aspects of the filter (or solver) specific routines `PDAF_assimilate_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration] and its sub-page on [InsertAnalysisStep inserting the analysis step]. The routine is used in the fully-parallel implementation variant of the data assimilation system. When the 'flexible' implementation variant is used, the routines `PDAF_put_state_*` is used as described further below. Here, we list the full interface of the routine. Subsequently, the user-supplied routines specified in the call is explained.
     52
     53There are two variants that either compute the transformataion of the ensemble transformation using the local LESTKF method, or the global ESTKF.
     54
     55=== `PDAF3_assimilate_3dvar_all` ===
     56
     57This routine is used both in the ''fully-parallel'' and the ''flexible'' implementation variants of the data assimilation system. (See the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration] for these variants)
     58
     59The interface is:
     60{{{
     61SUBROUTINE PDAF3_assimilate_3dvar_all(collect_state_pdaf, distribute_state_pdaf, &
     62                                 init_dim_obs_pdafomi, obs_op_pdafomi, &
     63                                 cvt_ens_pdaf, cvt_adj_ens_pdaf, cvt_pdaf, cvt_adj_pdaf, &
     64                                 obs_op_lin_pdafomi, obs_op_adj_pdafomi, &
     65                                 init_n_domains_p_pdaf, init_dim_l_pdaf, init_dim_obs_l_pdafomi, &
     66                                 prepoststep_pdaf, next_observation_pdaf, outflag)
     67}}}
     68where all arguments, except the last one, are the names of call-back routines:
     69 * [#U_collect_state_pdafcollect_state_pdaf.F90 collect_state_pdaf]: The name of the user-supplied routine that initializes a state vector from the array holding the ensemble of model states from the model fields. This is basically the inverse operation to `distribute_state` used in `PDAF_init_forecast` as well as here.
     70 * [#U_distribute_state_pdafdistribute_state_pdaf.F90 distribute_state_pdaf]:  The name of a user supplied routine that initializes the model fields from the array holding the ensemble of model state vectors.
     71 * [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 init_dim_obs_pdafomi]: The name of the user-supplied routine that initializes the observation information and provides the size of observation vector
     72 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 obs_op_pdafomi]: The name of the user-supplied routine that acts as the observation operator on some state vector
     73 * [#U_cvt_ens_pdafcvt_ens_pdaf.F90 cvt_ens_pdaf]: The name of the user-supplied routine that applies the ensemble control-vector transformation (square-root of the B-matrix) on some control vector to obtain a state vector.
     74 * [#U_cvt_adj_ens_pdafcvt_adj_ens_pdaf.F90 cvt_adj_ens_pdaf]: The name of the user-supplied routine that applies the adjoint ensemble control-vector transformation (with square-root of the B-matrix) on some state vector to obtain the control vector.
     75 * [#U_cvt_pdafcvt_pdaf.F90 cvt_pdaf]: The name of the user-supplied routine that applies the control-vector transformation (square-root of the B-matrix) on some control vector to obtain a state vector.
     76 * [#U_cvt_adj_pdafcvt_adj_pdaf.F90 cvt_adj_pdaf]: The name of the user-supplied routine that applies the adjoint control-vector transformation (with square-root of the B-matrix) on some state vector to obtain the control vector.
     77 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the linearized observation operator on some state vector
     78 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the adjoint observation operator on some state vector
     79 * [#U_init_n_domains_pdafinit_n_domains_pdaf.F90 init_n_domains_pdaf]: The name of the routine that provides the number of local analysis domains
     80 * [#U_init_dim_l_pdafinit_dim_l_pdaf.F90 init_dim_l_pdaf]: The name of the routine that provides the state dimension for a local analysis domain
     81 * [#U_init_dim_obs_l_pdafomicallback_obs_pdafomi.F90 init_dim_obs_l_pdafomi]: The name of the routine that initializes the size of the observation vector for a local analysis domain
     82 * [#U_prepoststep_pdafprepoststep_ens_pdaf.F90 prepoststep_pdaf]: The name of the pre/poststep routine as in `PDAF_init_forecast`
     83 * [#U_next_observation_pdafnext_observation.F90 next_observation_pdaf]: The name of a user supplied routine that initializes the variables `nsteps`, `timenow`, and `doexit`. The same routine is also used in `PDAF_init_forecast`.
     84 * `status`: The integer status flag. It is zero, if the routine is exited without errors.
     85
     86
     87=== `PDAF3_assim_offline_3dvar_all` ===
     88
     89For the offline mode of PDAF, the routine `PDAF3_assim_offline_3dvar_all` is used to perform the analysis step.
     90The interface of the routine is identical with that of `PDAF3_assimilate_3dvar_all`, except that the user-supplied routines `U_distribute_state`, `U_collect_state` and `U_next_observation` are missing.
     91
     92The interface when using one of the global filters is the following:
     93{{{
     94  SUBROUTINE PDAF3_assim_offline_3dvar_all(&
     95                                 U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     96                                 U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, &
     97                                 U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, &
     98                                 U_init_n_domains_p, U_init_dim_l, U_init_dim_obs_l_pdafomi, &
     99                                 U_prepoststep, outflag)
     100}}}
     101
     102
     103
     104=== `PDAF3_put_state_3dvar_all` ===
     105
     106This routine exists for backward-compatibility. In implementations that were done before the release of PDAF V3.0, a 'put_state' routine was used for the `flexible` parallelization variant and for the offline mode.
     107When the 'flexible' implementation variant is chosen for the assimilation system, the routine. The routine `PDAF3_put_state_3dvar_all` allows to port such implemnetations to the PDAF3 interface with minimal changes.
     108The interface of the routine is identical with that of `PDAF3_assimilate_3dvar_all`, except that the user-supplied routines `U_distribute_state` and `U_next_observation` are missing.
     109
     110The interface when using one of the global filters is the following:
     111{{{
     112  SUBROUTINE PDAF3_put_state_3dvar_all(U_collect_state, &
     113                                 U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     114                                 U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, &
     115                                 U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, &
     116                                 U_init_n_domains_p, U_init_dim_l, U_init_dim_obs_l_pdafomi, &
     117                                 U_prepoststep, outflag)
     118}}}
     119
     120
     121
     122
     123== User-supplied routines ==
     124
     125Here all user-supplied routines are described that are required in the call to the assimilation routines for hybrid 3D-Var. For some of the generic routines, we link to the page on [wiki:OnlineModifyModelforEnsembleIntegration_PDAF3 modifying the model code for the ensemble integration].
     126
     127To indicate user-supplied routines we use the prefix `U_`. In the template directory `templates/` as well as in the tutorial implementations in `tutorial/` these routines exist without the prefix, but with the extension `_pdaf.F90`. The user-routines relating to OMI are collected in the file `callback_obs_pdafomi.F90`. In the section titles below we provide the name of the template file in parentheses.
     128
     129In the subroutine interfaces some variables appear with the suffix `_p`. This suffix indicates that the variable is particular to a model sub-domain, if a domain decomposed model is used. Thus, the value(s) in the variable will be different for different model sub-domains.
     130
     131
     132=== `U_collect_state` (collect_state_pdaf.F90) ===
     133
     134This routine is independent of the filter algorithm used.
     135
     136See the page on [InsertAnalysisStep#U_collect_statecollect_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     137
     138
     139=== `U_distribute_state` (distribute_state_pdaf.F90) ===
     140
     141This routine is independent of the filter algorithm used.
     142
     143See the page on [InsertAnalysisStep#U_distribute_statedistribute_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     144
     145
     146=== `U_init_dim_obs_pdafomi` (callback_obs_pdafomi.F90) ===
     147
     148This is a call-back routine for PDAF-OMI initializing the observation information. The routine just calls a routine from the observation module for each observation type.
     149
     150See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     151
     152
     153
     154=== `U_obs_op_pdafomi` (callback_obs_pdafomi.F90) ===
     155
     156This is a call-back routine for PDAF-OMI applying the observation operator to the state vector. The routine calls a routine from the observation module for each observation type.
     157
     158See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     159
     160
     161
     162
     163=== `U_cvt_ens` (cvt_ens_pdaf.F90) ===
     164
     165The interface for this routine is:
     166{{{
     167SUBROUTINE cvt_ens_pdaf(iter, dim_p, dim_ens, dim_cv_ens_p, ens_p, cv_p, Vcv_p)
     168
     169  INTEGER, INTENT(in) :: iter               ! Iteration of optimization
     170  INTEGER, INTENT(in) :: dim_p              ! PE-local observation dimension
     171  INTEGER, INTENT(in) :: dim_ens            ! Ensemble size
     172  INTEGER, INTENT(in) :: dim_cv_ens_p       ! Dimension of control vector
     173  REAL, INTENT(in) :: ens_p(dim_p, dim_ens) ! PE-local ensemble
     174  REAL, INTENT(in) :: cv_p(dim_cv_ens_p)    ! PE-local control vector
     175  REAL, INTENT(inout) :: Vcv_p(dim_p)       ! PE-local state increment
     176}}}
     177
     178The routine is called during the analysis step during the iterative minimization of the cost function.
     179It has to apply the control vector transformation to the control vector and return the transformed result vector. Usually this transformation is the multiplication with the square-root of the background error covariance matrix '''B'''. For the 3D Ensemble Var, this square root is usually expressed through the ensemble.
     180
     181If the control vector is decomposed in case of parallelization it first needs to the gathered on each processor and afterwards the transformation is computed on the potentially domain-decomposed state vector.
     182
     183
     184=== `U_cvt_adj` (cvt_adj_pdaf.F90) ===
     185
     186The interface for this routine is:
     187{{{
     188SUBROUTINE cvt_adj_ens_pdaf(iter, dim_p, dim_ens, dim_cv_ens_p, ens_p, Vcv_p, cv_p)
     189
     190  INTEGER, INTENT(in) :: iter                ! Iteration of optimization
     191  INTEGER, INTENT(in) :: dim_p               ! PE-local observation dimension
     192  INTEGER, INTENT(in) :: dim_ens             ! Ensemble size
     193  INTEGER, INTENT(in) :: dim_cv_ens_p        ! PE-local dimension of control vector
     194  REAL, INTENT(in) :: ens_p(dim_p, dim_ens)  ! PE-local ensemble
     195  REAL, INTENT(in)    :: Vcv_p(dim_p)        ! PE-local input vector
     196  REAL, INTENT(inout) :: cv_p(dim_cv_ens_p)  ! PE-local result vector
     197}}}
     198
     199The routine is called during the analysis step during the iterative minimization of the cost function.
     200It has to apply the adjoint control vector transformation to a state vector and return the control vector. Usually this transformation is the multiplication with transpose of the square-root of the background error covariance matrix '''B'''. or the 3D Ensemble Var, this square root is usually expressed through the ensemble.
     201
     202If the state vector is decomposed in case of parallelization one needs to take care that the application of the trasformation is complete. This usually requries a comminucation with MPI_Allreduce to obtain a global sun.
     203
     204
     205
     206=== `U_cvt` (cvt_pdaf.F90) ===
     207
     208The interface for this routine is:
     209{{{
     210SUBROUTINE cvt_pdaf(iter, dim_p, dim_cvec, cv_p, Vv_p)
     211
     212  INTEGER, INTENT(in) :: iter           ! Iteration of optimization
     213  INTEGER, INTENT(in) :: dim_p          ! PE-local observation dimension
     214  INTEGER, INTENT(in) :: dim_cvec       ! Dimension of control vector
     215  REAL, INTENT(in)    :: cv_p(dim_cvec) ! PE-local control vector
     216  REAL, INTENT(inout) :: Vv_p(dim_p)    ! PE-local result vector (state vector increment)
     217}}}
     218
     219The routine is called during the analysis step during the iterative minimization of the cost function.
     220It has to apply the control vector transformation to the control vector and return the transformed result vector. Usually this transformation is the multiplication with the square-root of the background error covariance matrix '''B'''.
     221
     222If the control vector is decomposed in case of parallelization it first needs to the gathered on each processor and afterwards the transformation is computed on the potentially domain-decomposed state vector.
     223
     224
     225=== `U_cvt_adj` (cvt_adj_pdaf.F90) ===
     226
     227The interface for this routine is:
     228{{{
     229SUBROUTINE cvt_adj_pdaf(iter, dim_p, dim_cvec, Vv_p, cv_p)
     230
     231  INTEGER, INTENT(in) :: iter           ! Iteration of optimization
     232  INTEGER, INTENT(in) :: dim_p          ! PE-local observation dimension
     233  INTEGER, INTENT(in) :: dim_cvec       ! Dimension of control vector
     234  REAL, INTENT(in)    :: Vv_p(dim_p)    ! PE-local result vector (state vector increment)
     235  REAL, INTENT(inout) :: cv_p(dim_cvec) ! PE-local control vector
     236}}}
     237
     238The routine is called during the analysis step during the iterative minimization of the cost function.
     239It has to apply the adjoint control vector transformation to a state vector and return the control vector. Usually this transformation is the multiplication with transposed of the square-root of the background error covariance matrix '''B'''.
     240
     241If the state vector is decomposed in case of parallelization one needs to take care that the application of the trasformation is complete. This usually requries a comminucation with MPI_Allreduce to obtain a global sun.
     242
     243
     244
     245
     246=== `U_obs_op_lin_pdafomi` (callback_obs_pdafomi.F90) ===
     247
     248This is a call-back routine for PDAF-OMI applying the linearized observation operator to the state vector. The routine calls a routine from the observation module for each observation type. If the full observation operator is lineaer the same operator can be used here.
     249
     250See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     251
     252
     253=== `U_obs_op_adj_pdafomi` (callback_obs_pdafomi.F90) ===
     254
     255This is a call-back routine for PDAF-OMI applying the adjoint observation operator to some vector inthe observation space. The routine calls a routine from the observation module for each observation type.
     256
     257See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     258
     259
     260
     261=== `U_init_n_domains` (init_n_domains_pdaf.F90) ===
     262
     263The interface for this routine is:
     264{{{
     265SUBROUTINE init_n_domains(step, n_domains_p)
     266
     267  INTEGER, INTENT(in)  :: step        ! Current time step
     268  INTEGER, INTENT(out) :: n_domains_p ! Number of analysis domains for local model sub-domain
     269}}}
     270
     271The routine is called during the analysis step before the loop over the local analysis domains is entered.
     272It has to provide the number of local analysis domains. In case of a domain-decomposed model the number of local analysis domain for the model sub-domain of the calling process has to be initialized.
     273
     274Hints:
     275 * As a simple case, if the localization is only performed horizontally, the local analysis domains can be single vertical columns of the model grid. In this case, `n_domains_p` is simply the number of vertical columns in the local model sub-domain.
     276
     277
     278
     279
     280=== `U_init_dim_l` (init_dim_l_pdaf.F90) ===
     281
     282The interface for this routine is:
     283{{{
     284SUBROUTINE init_dim_l(step, domain_p, dim_l)
     285
     286  INTEGER, INTENT(in)  :: step        ! Current time step
     287  INTEGER, INTENT(in)  :: domain_p    ! Current local analysis domain
     288  INTEGER, INTENT(out) :: dim_l       ! Local state dimension
     289}}}
     290
     291The routine is called during the loop over the local analysis domains in the analysis step.
     292For PDAF it has to provide in `dim_l` the dimension of the state vector for the local analysis domain with index `domain_p`.
     293
     294In addition, for PDAFlocal the routine has to provide the index array containing the indices of the elements of the local state vector in the global (or domain-decomposed) state vector to PDAFlocal by calling `PDAFlocal_set_indices`. (in the template files, this array is called `id_lstate_in_pstate`)
     295
     296Hints:
     297 * For sharing through the module `mod_assimilation`, we further initialize an array `coords_l` containing the coordinates that describe the local domain.
     298  * These coordinates have to describe one location in space that is used in the OMI observation modules to compute the distance from observations.
     299  * The coordinates in `coords_l` have the same units as those used for the observations
     300  * For geographic distance computations, the unit of the coordinates needs to be radian, thus (0, 2*pi) or (-pi,pi) for longitude and (-pi/2, pi/2) for latitude.
     301 * Any form of local domain is possible as long as it can be describe as a single location.
     302  * If the local domain is a single grid point, `dim_l` will be the number of model variables at this grid point.
     303  * The local analysis domain can also be a single vertical column of the model grid if observations are only horizontally distributed (a common situation with satellite data in the ocean).
     304   * In this case, `dim_l` will be the number of vertical grid points at this location times the number of model fields that exist in the vertical, plus possible variables at e.g. the surface.
     305   * In this case only the horizontal coordinates are used in `coords_l`.
     306
     307The index array `id_lstate_in_pstate` is an integer array in form of a one-dimensional vector. One initializes this vector by determining the indices of the elements of the local state vector in the global, or domain decomposed, state vector. After initializing `id_lstate_in_pstate`, one has to provided it to PDAFlocal by calling `PDAFlocal_set_indices'. The interface interface is:
     308
     309{{{
     310SUBROUTINE PDAFlocal_set_indices(dim_l, id_lstate_in_pstate)
     311
     312  INTEGER, INTENT(in) :: dim_l                          ! Dimension of local state vector
     313  INTEGER, INTENT(in) :: id_lstate_in_pstate(dim_l)     ! Index array for mapping
     314}}}
     315
     316Hint for `id_lstate_in_pstate`:
     317 * The initialization of the index vector `id_lstate_to_pstate` is analogous to a loop that directly performs the initialization of a local state vector. However, here only the indices are stored.
     318 * See the [wiki:PDAFlocal_overview PDAFlocal overview page] for more information on the functionality of PDAFlocal.
     319
     320
     321=== `U_init_dim_obs_l_pdafomi` (callback_obs_pdafomi.F90) ===
     322
     323This is a call-back routine for PDAF-OMI that initializes the local observation vector. The routine calls a routine from the observation module for each observation type.
     324
     325See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     326
     327
     328=== `U_prepoststep` (prepoststep_ens_pdaf.F90) ===
     329
     330The routine has already been described for modifying the model for the ensemble integration and for inserting the analysis step.
     331
     332See the page on [InsertAnalysisStep#U_prepoststepprepoststep_ens_pdaf.F90 inserting the analysis step] for the description of this routine.
     333
     334
     335=== `U_next_observation` (next_observation_pdaf.F90) ===
     336
     337This routine is independent of the filter algorithm used.
     338
     339See the page on [InsertAnalysisStep#U_next_observationnext_observation_pdaf.F90 inserting the analysis step] for the description of this routine.
     340
     341
     342== Execution order of user-supplied routines ==
     343
     344The user-supplied routines are essentially executed in the order they are listed in the interface to `PDAFomi_assimilate_3dvar`. The order can be important as some routines can perform preparatory work for later routines. For example, `U_init_dim_obs_pdafomi` prepares an index array that provides the information for executing the observation operator in `U_obs_op_pdafomi`. How this information is initialized is described in the documentation of OMI.
     345
     346Before the analysis step is called the following routine is executed:
     347 1. [#U_collect_statecollect_state_pdaf.F90 U_collect_state]
     348
     349The analysis step is executed when the ensemble integration of the forecast is completed. During the analysis step the following routines are executed in the given order:
     350 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the forecast ensemble, called with negative value of the time step)
     351 1. [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]
     352 1. [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi] (multiple calls, one for each ensemble member)
     353
     354Inside the analysis step the interative optimization is computed. This involves the repeated call of the routines:
     355 1. [#U_cvtcvt_pdaf.F90 U_cvt]
     356 1. [#U_cvt_enscvt_ens_pdaf.F90 U_cvt_ens]
     357 1. [#U_obs_op_lin_pdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]
     358 1. [#U_obs_op_adj_pdafomicallback_obs_pdafomi.F90 U_obs_op_adj_pdafomi]
     359 1. [#U_cvt_adjcvt_adj_pdaf.F90 U_cvt_adj]
     360 1. [#U_cvt_adj_enscvt_adj_ens_pdaf.F90 U_cvt_adj_ens]
     361
     362After the iterative optimization the following routines are executes to complte the analysis step:
     363 1. [#U_cvt_enscvt_pdaf.F90 U_cvt] (Call to the parameterized part of the control vector transform to compute the final state vector increment)
     364 1. [#U_cvt_enscvt_ens_pdaf.F90 U_cvt_ens] (Call to the eensemble-part of the control vector transform to compute the final state vector increment)
     365 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the analysis ensemble, called with (positive) value of the time step)
     366
     367The iterative optimization abovve computes an updated ensemble mean state. Subsequently, the ensemble perturbations are updated using the LESTKF or ESTKF. The execution of the routines for these filters is described for the LESTKF on the [wiki:ImplementAnalysisLocal page on implementing the local filter analysis step] and for the ESTKF on the [wiki:ImplementAnalysisGlobal page on implementing the global filter analysis step].
     368
     369In case of the routine `PDAFomi_assimilate_*`, the following routines are executed after the analysis step:
     370 1. [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]
     371 1. [#U_next_observationnext_observation_pdaf.F90 U_next_observation]