Changes between Version 287 and Version 288 of PublicationsandPresentations
- Timestamp:
- Jan 4, 2025, 5:43:55 PM (2 weeks ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
PublicationsandPresentations
v287 v288 35 35 === Accepted === 36 36 37 Bunsen, F., J. Hauck, L. Nerger, S. Torres-Valdés. (2024) Ocean carbon sink assessment via temperature and salinity data assimilation into a global ocean biogeochemistry model. Ocean Science, [https://doi.org/10.5194/egusphere-2024-1750 Preprint]37 //Bunsen, F.//, J. Hauck, //L. Nerger//, S. Torres-Valdés. (2024) Ocean carbon sink assessment via temperature and salinity data assimilation into a global ocean biogeochemistry model. Ocean Science, [https://doi.org/10.5194/egusphere-2024-1750 Preprint] 38 38 39 39 Guo, Y. ,Y. Yu , J. Liu (2024) Employment of an Arctic sea-ice data assimilation scheme in the coupled climate system model FGOALS-f3-L and its preliminary results, Atmospheric and Oceanic Science Letters (2024), [https://doi.org/10.1016/j.aosl.2024.100553 doi:10.1016/j.aosl.2024.100553] … … 71 71 Song, R., L. Mu, S. N. Loza, F. Kauker, X. Chen (2024) Assimilating Summer Sea-Ice Thickness Observations Improves Arctic Sea-Ice Forecast. Geophys. Rec. Lett., 51, e2024GL110405 [https://doi.org/10.1029/2024GL110405 doi:10.1029/2024GL110405] 72 72 73 Döll, P., Hasan, H. M. M., Schulze, K., Gerdener, H., Börger, L., Shadkam, S., Ackermann, S., Hosseini-Moghari, S.-M., Müller Schmied, H., Güntner, A. Kusche, J. (2024) Leveraging multi-variable observations to reduce and quantify the output uncertainty of a global hydrological model: evaluation of three ensemble-based approaches for the Mississippi River basin. Hydrology and Earth System Sciences. 28, 2259-2295 [https://doi.org/10.5194/hess-28-2259-2024 doi:10.5194/hess-28-2259-2024]73 Döll, P., Hasan, H. M. M., Schulze, K., Gerdener, H., Börger, L., Shadkam, S., Ackermann, S., Hosseini-Moghari, S.-M., Müller Schmied, H., Güntner, A., Kusche, J. (2024) Leveraging multi-variable observations to reduce and quantify the output uncertainty of a global hydrological model: evaluation of three ensemble-based approaches for the Mississippi River basin. Hydrology and Earth System Sciences. 28, 2259-2295 [https://doi.org/10.5194/hess-28-2259-2024 doi:10.5194/hess-28-2259-2024] 74 74 75 75 Stramska, M., Jakacki, J. (2024) Variability of chlorophyll a concentration in surface waters of the open Baltic Sea. Oceanologica, 66, 365-380 [https://doi.org/10.1016/j.oceano.2024.02.003 doi:10.1016/j.oceano.2024.02.003] … … 77 77 Düsterhus, A., S. Brune (2024) Decadal Predictability of Seasonal Temperature Distributions, Geophysical Research Letters, 51, e2023GL107838, [https://doi.org/10.1029/2023GL107838 10.1029/2023GL107838] 78 78 79 Shao, C.and //Nerger, L//. (2024) WRF-PDAF v1.0: implementation and application of an online localized ensemble data assimilation framework, Geoscientific Model Development, 17, 4433–4445, [https://doi.org/10.5194/gmd-17-4433-2024 doi:10.5194/gmd-17-4433-2024]79 //Shao, C.// and //Nerger, L//. (2024) WRF-PDAF v1.0: implementation and application of an online localized ensemble data assimilation framework, Geoscientific Model Development, 17, 4433–4445, [https://doi.org/10.5194/gmd-17-4433-2024 doi:10.5194/gmd-17-4433-2024] 80 80 81 81 Tang, Q., H. Delottier, W. Kurtz, //L. Nerger//, O. S. Schilling, P. Brunner (2024) HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model. Geoscientific Model Development, 17, 3559-3578 [https://doi.org/10.5194/gmd-17-3559-2024 doi:10.5194/gmd-17-3559-2024] … … 87 87 Strebel, L., H. Bogena, H. Vereecken, M. Andreasen, S. Aranda-Barranco, H.-J. Hendricks Franssen (2024) Evapotranspiration prediction for European forest sites does not improve with assimilation of in situ soil water content data. Hydrology andd Earth System Sciences, 28, 1001-1026 [https://doi.org/10.5194/hess-28-1001-2024 doi:10.5194/hess-28-1001-2024] 88 88 89 Shao, C.& //L. Nerger// (2024) The Impact of Profiles Data Assimilation on an Ideal Tropical Cyclone Case. Remote Sensing, 16, 430 [https://doi.org/10.3390/rs16020430 doi:10.3390/rs16020430]89 //Shao, C.// & //L. Nerger// (2024) The Impact of Profiles Data Assimilation on an Ideal Tropical Cyclone Case. Remote Sensing, 16, 430 [https://doi.org/10.3390/rs16020430 doi:10.3390/rs16020430] 90 90 91 91 Li, Y., Z. Cong, D. Yang (2024) The ecohydrological response to soil moisture based on the distributed hydrological assimilation model in the mountain region. Ecohydrology, 17, e2606 [https://doi.org/10.1002/eco.2606 doi:10.1002/eco.2606] … … 104 104 Luo, H., Q. Yang, M. Mazloff, //L. Nerger//, and D. Chen (2023) The impacts of optimizing model-dependent parameters on the Antarctic sea ice data assimilation. Geophysical Research Letters, 50, e2023GL105690, [http://dx.doi.org/10.1029/2023GL105690 doi:10.1029/2023GL105690] 105 105 106 Min, C., Q. Yang, H. Luo, D. Chen, T. Krumpen, //N. Mamnun//, X. Liu, and //L. Nerger// (2023). Improving Arctic sea-ice thickness estimates with the assimilation of !CryoSat-2 summer observations. Ocean-Land-Atmosphere Research, 6, 0025 [https://doi.org/10.34133/olar.0025 doi:10.34133/olar.0025]106 //Min, C.//, Q. Yang, H. Luo, D. Chen, T. Krumpen, //N. Mamnun//, X. Liu, and //L. Nerger// (2023). Improving Arctic sea-ice thickness estimates with the assimilation of !CryoSat-2 summer observations. Ocean-Land-Atmosphere Research, 6, 0025 [https://doi.org/10.34133/olar.0025 doi:10.34133/olar.0025] 107 107 108 108 Cook, S., F. Gillet-Chaulet, J. Fuerst. Robust reconstruction of glacier beds using transient 2D assimilation with Stokes. Journal of Glaciology. 69, 1393-1402, [https://doi.org/10.1017/jog.2023.26 doi:10.1017/jog.2023.26] … … 122 122 Brandhorst, N., I. Neuweiler. (2023) Impact of parameter updates on soil moisture assimilation in a 3D heterogeneous hillslope model. Hydrology and Earth System Sciences (HESS), 27, 1301-1323 [https://doi.org/10.5194/hess-27-1301-2023 doi:10.5194/hess-27-1301-2023] 123 123 124 Pohlmann, H., S. Brune, K. Fröhlich, J. H. Jungclaus, C. Sgoff 124 Pohlmann, H., S. Brune, K. Fröhlich, J. H. Jungclaus, C. Sgoff, J. Baehr. (2023) Impact of ocean data assimilation on climate predictions with ICON-ESM. Climate Dynamics, 61, 357–373 [https://doi.org/10.1007/s00382-022-06558-w] 125 125 126 126 Williams, N., N. Byrne, D. Feltham, P. J. van Leeuwen, R. Bannister, D. Schroeder, A. Ridout, //L. Nerger// (2023) The effects of assimilating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice data assimilation system. The Cryosphere, 17, 2509–2532 [https://doi.org/10.5194/tc-17-2509-2023 10.5194/tc-17-2509-2023] … … 135 135 Tian, Z., X Liang, J. Zhang, H. Bi, F. Zhao, C. Li (2022) Thermodynamical and Dynamical Impacts of an Intense Cyclone on Arctic Sea Ice, Journal of Geophysical Research Oceans, 127, e2022JC018436. [https://doi.org/10.1029/2022JC018436 doi:10.1029/2022JC018436] 136 136 137 Mu, L., L. Nerger, J. Streffing, Q. Tang, B. Niraula, L. Zampieri, S. N. Loza, H. F. Goessling. (2022) Sea-ice forecasts with an upgraded AWI Coupled137 Mu, L., //L. Nerger//, J. Streffing, //Q. Tang//, B. Niraula, L. Zampieri, S. N. Loza, H. F. Goessling. (2022) Sea-ice forecasts with an upgraded AWI Coupled 138 138 Prediction System, Journal of Advances in Modeling Earth Systems, 14, e2022MS003176, [https://doi.org/10.1029/2022MS003176 doi:10.1029/2022MS003176] 139 139 … … 142 142 Corbin, A, J. Kusche. (2022) Improving the estimation of thermospheric neutral density via two-step assimilation of in situ neutral density into a numerical model. Earth, Planets and Space, 74, 183. [https://doi.org/10.1186/s40623-022-01733-z doi:10.1186/s40623-022-01733-z] 143 143 144 Mamnun, N., C. Voelker, M. Vrekoussis, L. Nerger.(2022) Uncertainties in ocean biogeochemical simulations: Application of ensemble data assimilation to a one-dimensional model. Frontiers in Marine Science, 9, 984236. [https://doi.org/10.3389/fmars.2022.984236 doi:10.3389/fmars.2022.984236]144 //Mamnun, N.//, C. Voelker, M. Vrekoussis, //L. Nerger.// (2022) Uncertainties in ocean biogeochemical simulations: Application of ensemble data assimilation to a one-dimensional model. Frontiers in Marine Science, 9, 984236. [https://doi.org/10.3389/fmars.2022.984236 doi:10.3389/fmars.2022.984236] 145 145 146 146 Hövel, L., S. Brune, J. Baehr. (2022) Decadal prediction of Marine HEatwaves in MPI_ESM. Geophysical Research Letters, 49, e2022GL099347. [https://doi.org/10.1029/2022GL099347 doi:10.1029/2022GL099347] … … 154 154 Ben Ali, M.Y., O. Léon, D. Donjat, H. Bézard, E. Laroche, V. Mons, F. Champagnat (2022) Data assimilation for aerothermal mean flow reconstruction using aero-optical observations: a synthetic investigation, 56th 3AF International Conference on Applied Aerodynamics 28 — 30 March 2022, Toulouse – France [https://www.researchgate.net/publication/359619309] 155 155 156 Nerger, L.(2022) Data assimilation for nonlinear systems with a hybrid nonlinear-Kalman ensemble transform filter. Q. J. Meteorol. Soc., 148, 620-640 [https://doi.org/10.1002/qj.4221 doi:10.1002/qj.4221]156 //Nerger, L.// (2022) Data assimilation for nonlinear systems with a hybrid nonlinear-Kalman ensemble transform filter. Q. J. Meteorol. Soc., 148, 620-640 [https://doi.org/10.1002/qj.4221 doi:10.1002/qj.4221] 157 157 158 158 Schachtschneider, R., J. Saynisch-Wagner, V. Klemann, M. Bagge, M. Thomas (2022) An approach for constraining mantle viscosities through assimilation of palaeo sea level data into a glacial isostatic adjustment model. Nonlinear Processes in Geophysics 29, 53-75 [https://doi.org/10.5194/npg-29-53-2022 doi:10.5194/npg-29-53-2022] … … 174 174 Models Intercomparison eXperiment Phase 2 (ITMIX2), Frontiers in Earth Science 8, 571923. [https://doi.org/10.3389/feart.2020.571923 doi:10.3389/feart.2020.571923] 175 175 176 Tang, Q., L. Mu, H. F. Goessling, T. Semmler, L. Nerger(2021) Strongly coupled data assimilation of ocean observations into an ocean-atmosphere model, Geophys. Res. Lett, 48, e2021GL094941 [https://doi.org/10.1029/2021GL094941 doi:10.1029/2021GL094941]176 //Tang, Q.//, L. Mu, H. F. Goessling, T. Semmler, //L. Nerger// (2021) Strongly coupled data assimilation of ocean observations into an ocean-atmosphere model, Geophys. Res. Lett, 48, e2021GL094941 [https://doi.org/10.1029/2021GL094941 doi:10.1029/2021GL094941] 177 177 178 178 Shu, Q., F. Qiao, J. Liu, Z. Song, Z. Chen, J. Zhao, X. Yin, Y. Song. (2021) Arctic sea ice concentration and thickness data assimilation in 179 179 the FIO-ESM climate forecast system, Acta Oceanol. Sin., 40, 65–75 [https://doi.org/10.1007/s13131-021-1768-4 doi:10.1007/s13131-021-1768-4] 180 180 181 Luo, H., Q. Yang, L. Mu, X. Tian-Kunze, L. Nerger, M. Mazloff, L. Kaleschke, D. Chen. (2021) DASSO: a data assimilation system for the Southern Ocean that utilizes both sea-ice concentration and thickness observations, Journal of Glaciology, 67, 1235-1240 [https://doi.org/10.1017/jog.2021.57 doi:10.1017/jog.2021.57]181 Luo, H., Q. Yang, L. Mu, X. Tian-Kunze, //L. Nerger//, M. Mazloff, L. Kaleschke, D. Chen. (2021) DASSO: a data assimilation system for the Southern Ocean that utilizes both sea-ice concentration and thickness observations, Journal of Glaciology, 67, 1235-1240 [https://doi.org/10.1017/jog.2021.57 doi:10.1017/jog.2021.57] 182 182 183 183 von Schuckmann K. et al (2021) Copernicus Marine Service Ocean State Report, Issue 5. J. Oper. Oce. 14:sup1, 1-185 [https://doi.org/10.1080/1755876X.2021.1946240 doi:10.1080/1755876X.2021.1946240] … … 195 195 Friedemann, S., Raffin, B. An elastic framework for ensemble-based large-scale data assimilation. [Research Report] RR-9377, Inria Grenoble Rhône-Alpes, Université de Grenoble. 2020. hal-03017033v2 [https://hal.archives-ouvertes.fr/hal-03017033v2] 196 196 197 Tang, Q., Mu, L., Sidorenko, D., Goessling, H., Semmler, T., Nerger, L.(2020) Improving the ocean and atmosphere in a coupled ocean‐atmosphere model by assimilating satellite sea surface temperature and subsurface profile data. Q. J. Royal Metorol. Soc., 146, 4014-4029 [https://doi.org/10.1002/qj.3885 doi:10.1002/qj.3885]197 //Tang, Q.//, Mu, L., Sidorenko, D., Goessling, H., Semmler, T., //Nerger, L.// (2020) Improving the ocean and atmosphere in a coupled ocean‐atmosphere model by assimilating satellite sea surface temperature and subsurface profile data. Q. J. Royal Metorol. Soc., 146, 4014-4029 [https://doi.org/10.1002/qj.3885 doi:10.1002/qj.3885] 198 198 199 199 Zheng, Y., Albergel, C., Munier, S., Bonan, B., Calvet, J.-C. (2020) An offline framework for high-dimensional ensemble Kalman filters to reduce the time to solution. Geoscientific Model Development. 13, 3607-3625 [http://doi.org/10.5194/gmd-13-3607-2020 doi:10.5194/gmd-13-3607-2020] … … 207 207 Brune, S., Baehr, J. (2020) Preserving the coupled atmosphere-ocean feedback in initializations of decadal climate predictios. Wiley Interdisciplinary Reviews - Climate Change, e637 [https://doi.org/10.1002/wcc.637 doi:10.1002/wcc.637] 208 208 209 Mu, L., Nerger, L., Tang, Q., Losa, S. N., Sidorenko, D., Wang, Q., Semmler, T., Zampieri, L., Losch, M., Goessling, H. F. (2020) Towards a data assimilation system for seamless sea ice prediction based o the AWI climate model. Journal of Advances in Modeling Earth Systems, 12, e2019MS001937 [https://doi.org/10.1029/2019MS001937 doi:10.1029/2019MS001937]209 Mu, L., //Nerger, L.//, //Tang, Q.//, Losa, S. N., Sidorenko, D., Wang, Q., Semmler, T., Zampieri, L., Losch, M., Goessling, H. F. (2020) Towards a data assimilation system for seamless sea ice prediction based o the AWI climate model. Journal of Advances in Modeling Earth Systems, 12, e2019MS001937 [https://doi.org/10.1029/2019MS001937 doi:10.1029/2019MS001937] 210 210 211 211 Liang, X., Zhao, F., Li, C., Zhang, L., Li, B. (2020) Evaluation of ArcIOPS sea ice forecasting products during the ninth CHINARE-Arctic in summer 2018. Adv. Polar Science, 31, 14-25 [https://doi.org/10.13679/j.advps.2019.0019 doi:10.13679/j.advps.2019.0019] … … 213 213 Naz, B. S., Kollet, S., Hendricks-Franssen, H.-J., Montzka,C. Kurtz, W. (2020) A 3 km spatially and temporally consustent European daily soil moisture reanalysis from 2000 to 2015. Scientific Data 7, 111 [https://doi.org/10.1038/s41597-020-0450-6 doi:10.1038/s41597-020-0450-6] 214 214 215 Pradhan, H.K., Voelker, C., Losa, S.N., Bracher, A., Nerger, L.(2020) Global assimilation of ocean-color data of phytoplankton functional types: Impact of different datasets. Journal of Geophysical Research Oceans, 125, e2019JC015586 [https://doi.org/10.1029/2019JC015586 doi:10.1029/2019JC015586]215 //Pradhan, H.K.//, Voelker, C., Losa, S.N., Bracher, A., //Nerger, L.// (2020) Global assimilation of ocean-color data of phytoplankton functional types: Impact of different datasets. Journal of Geophysical Research Oceans, 125, e2019JC015586 [https://doi.org/10.1029/2019JC015586 doi:10.1029/2019JC015586] 216 216 217 217 Sanchez, S., Wicht, J., Bärenzung, J. (2020) Predictions of the geomagnetic secular variation based on the ensemble sequential assimilation of geomagnetic field models by dynamo simulations. Earth, Planets and Space, Vol. 72, 157 [https://doi.org/10.1186/s40623-020-01279-y]