30 | | * Close to the start of the model code the routine `init_parallel_pdaf` as added to the code. If the model itself is parallelized the correct location is directly after the initialization of the parallelization in the model code. `init_parallel_pdaf` creates the parallel environment that allows to perform several time stepping loops at the same time. |
31 | | * After the initialization part of the model, a routines `init_pdaf` is added. In this routine, parameters for PDAF can be defined and then the core initialization routine PDAF_init is called. This core routine also initializes the array of ensemble states. |
32 | | * In order to allow for the integration of the state ensemble an unconditional loop is added around the time stepping loop of the model. This will allow to compute the time stepping loop multiple time during the model integration. PDAF provide an exit-flag for this loop. (There are some conditions, under which this external loop is not required. Some note on this are given further below.) |
33 | | * Inside the external loop the PDAF core routine `PDAF_get_state` is added to the code. This routine initializes model fields form the array of ensemble states and initialized the number of time step that have to be computed and ensured that the ensemble integration is performed correctly. |
34 | | * At the end of the external loop, the PDAF core routine `PDAF_put_state` is added to the model code. This routine write the propagated model fields back into a state vector of the ensemble array. Also it checks whether the ensemble integration is complete. If not, the next ensemble member will be integrated. If the ensemble integration is complete, the analysis step (i.e. the actual assimilation of the observations) is computed. |
| 30 | * `init_parallel_pdaf`: This routine is inserted close to the start of the model code. If the model itself is parallelized the correct location is directly after the initialization of the parallelization in the model code. `init_parallel_pdaf` creates the parallel environment that allows to perform several time stepping loops ("model tasks") at the same time. |
| 31 | * `init_pdaf`: This routine is added after the initialization part of the model. In `init_pdaf`, parameters for PDAF can be defined and then the core initialization routine `PDAF_init` is called. This core routine also initializes the array of ensemble states. |
| 32 | * Ensemble loop: In order to allow for the integration of the state ensemble an unconditional loop is added around the time stepping loop of the model. This loop will allow to compute the time stepping loop multiple time during the model integration. PDAF provides an exit-flag for this loop. (There are some conditions, under which this external loop is not required. Some notes on this are given further below.) |
| 33 | * `PDAF_get_state`: Inside the ensemble loop, the PDAF core routine `PDAF_get_state` is added to the code. This routine initializes model fields from the array of ensemble states and initializes the number of time steps that have to be computed and ensures that the ensemble integration is performed correctly. |
| 34 | * `PDAF_put_state`: At the end of the external loop, the PDAF core routine `PDAF_put_state` is added to the model code. This routine writes the propagated model fields back into a state vector of the ensemble array. Also it checks whether the ensemble integration is complete. If not, the next ensemble member will be integrated. If the ensemble integration is complete, the analysis step (i.e. the actual assimilation of the observations) is computed. |