Changes between Initial Version and Version 1 of ImplementAnalysis_Hyb3DVar


Ignore:
Timestamp:
Dec 9, 2021, 11:32:51 AM (3 years ago)
Author:
lnerger
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • ImplementAnalysis_Hyb3DVar

    v1 v1  
     1= Implementation of the Analysis Step for Hybrid 3D-Var with OMI =
     2
     3{{{
     4#!html
     5<div class="wiki-toc">
     6<h4>Implementation Guide</h4>
     7<ol><li><a href="ImplementationGuide">Main page</a></li>
     8<li><a href="AdaptParallelization">Adaptation of the parallelization</a></li>
     9<li><a href="InitPdaf">Initialization of PDAF</a></li>
     10<li><a href="ModifyModelforEnsembleIntegration">Modifications for ensemble integration</a></li>
     11<li><a href="OMI_ImplementationofAnalysisStep">Implementation of the analysis step with OMI</a></li>
     12<ol>
     13<li><a href="ImplementAnalysisGlobal">Implementation for Global Filters</a></li>
     14<li><a href="ImplementAnalysisLocal">Implementation for Local Filters</a></li>
     15<li><a href="ImplementAnalysislenkfOmi">Implementation for LEnKF</a></li>
     16<li><a href="ImplementAnalysis_3DVar">Implementation for 3D-Var</a></li>
     17<li><a href="ImplementAnalysis_3DEnVar">Implementation for 3D Ensemble Var</a></li>
     18<li>Implementation for hybrid 3D-Var</li>
     19<li><a href="PDAF_OMI_Overview">PDAF-OMI Overview</a></li>
     20</ol>
     21<li><a href="AddingMemoryandTimingInformation">Memory and timing information</a></li>
     22<li><a href="EnsembleGeneration">Ensemble Generation</a></li>
     23<li><a href="DataAssimilationDiagnostics">Diagnostics</a></li>
     24</ol>
     25</div>
     26}}}
     27
     28[[PageOutline(2-3,Contents of this page)]]
     29
     30== Overview ==
     31
     32With Version 2.0 with introduced 3D variational assimilation methods to PDAF. There are genenerally three different variants: parameterized 3D-Var, 3D Ensemble Var, and hybrid (parameterized + ensemble) 3D-Var.
     33
     34This page describes the implementation of the analysis step for the Hybrid 3D-Var using PDAF-OMI.
     35
     36For the analysis step of 3D-Var we need different operations related to the observations. These operations are requested by PDAF by call-back routines supplied by the user and provided in the OMI structure. The names of the routines that are provided by the user are specified in the call to the routine `PDAFomi_assimilate_hyb3dvar_*` in the fully-parallel implementation (or `PDAFomi_put_state_hyb3dvar_*` for the 'flexible' implementation) that was discussed before. With regard to the parallelization, all these routines (except `U_collect_state`, `U_distribute_state`, and `U_next_observation`) are executed by the filter processes (`filterpe=.true.`) only.
     37
     38For Hybrid 3D-Var the background covariance matrix '''B''' is represented by a combination of a parameterized covariance matrix with a covariance matrix part represented by the ensemble. In practive this means that in the square root of '''B''' one concatenates parameterized and ensemble columns. The ensemble perturbations need to be transformed by means of an ensemble Kalman filter. PDAF uses for this the error-subspace transform filter ESTKF. There are two variants: The first uses the localized filter LESTKF, while the second uses the global filter ESTKF.
     39
     40For completeness we discuss here all user-supplied routines that are specified in the interface to `PDAFomi_assimilate_hyb3dvar_X`. Thus, some of the user-supplied routines that are explained on the page describing the modification of the model code for the ensemble integration are repeated here.
     41
     42
     43== Analysis Routines ==
     44
     45The general aspects of the filter (or solver) specific routines `PDAF_assimilate_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration] and its sub-page on [InsertAnalysisStep inserting the analysis step]. The routine is used in the fully-parallel implementation variant of the data assimilation system. When the 'flexible' implementation variant is used, the routines `PDAF_put_state_*` is used as described further below. Here, we list the full interface of the routine. Subsequently, the user-supplied routines specified in the call is explained.
     46
     47There are two variants that either compute the transformataion of the ensemble transformation using the local LESTKF method, or the global ESTKF.
     48
     49=== `PDAFomi_assimilate_hyb3dvar_lestkf` ===
     50
     51This routine is called for the case of transforming the ensemble perturbations using the local LESTKF.
     52
     53The interface is:
     54{{{
     55SUBROUTINE PDAFomi_assimilate_en3dvar_lestkf(U_collect_state, U_distribute_state, &
     56                                 U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     57                                 U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, &
     58                                 U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, &
     59                                 U_init_n_domains_p, U_init_dim_l, U_init_dim_obs_l_pdafomi, &
     60                                 U_g2l_state, U_l2g_state, U_prepoststep, U_next_observation, outflag)
     61}}}
     62with the following arguments:
     63 * [#U_collect_statecollect_state_pdaf.F90 U_collect_state]: The name of the user-supplied routine that initializes a state vector from the array holding the ensemble of model states from the model fields. This is basically the inverse operation to `U_distribute_state` used in `PDAF_get_state` as well as here.
     64 * [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]:  The name of a user supplied routine that initializes the model fields from the array holding the ensemble of model state vectors.
     65 * [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]: The name of the user-supplied routine that initializes the observation information and provides the size of observation vector
     66 * [#U_cvt_enscvt_ens_pdaf.F90 U_cvt_ens]: The name of the user-supplied routine that applies the ensemble control-vector transformation (square-root of the B-matrix) on some control vector to obtain a state vector.
     67 * [#U_cvt_adj_enscvt_adj_ens_pdaf.F90 U_cvt_adj_ens]: The name of the user-supplied routine that applies the adjoint ensemble control-vector transformation (with square-root of the B-matrix) on some state vector to obtain the control vector.
     68 * [#U_cvtcvt_pdaf.F90 U_cvt]: The name of the user-supplied routine that applies the control-vector transformation (square-root of the B-matrix) on some control vector to obtain a state vector.
     69 * [#U_cvt_adjcvt_adj_pdaf.F90 U_cvt_adj]: The name of the user-supplied routine that applies the adjoint control-vector transformation (with square-root of the B-matrix) on some state vector to obtain the control vector.
     70 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi]: The name of the user-supplied routine that acts as the observation operator on some state vector
     71 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the linearized observation operator on some state vector
     72 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the adjoint observation operator on some state vector
     73 * [#U_init_n_domainsinit_n_domains_pdaf.F90 U_init_n_domains]: The name of the routine that provides the number of local analysis domains
     74 * [#U_init_dim_linit_dim_l_pdaf.F90 U_init_dim_l]: The name of the routine that provides the state dimension for a local analysis domain
     75 * [#U_init_dim_obs_l_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_l_pdafomi]: The name of the routine that initializes the size of the observation vector for a local analysis domain
     76 * [#U_g2l_stateg2l_state_pdaf.F90 U_g2l_state]: The name of the routine that initializes a local state vector from the global state vector
     77 * [#U_l2g_statel2g_state_pdaf.F90 U_l2g_state]: The name of the routine that initializes the corresponding part of the global state vector from the provided local state vector
     78 * [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep]: The name of the pre/poststep routine as in `PDAF_get_state`
     79 * [#U_next_observationnext_observation.F90 U_next_observation]: The name of a user supplied routine that initializes the variables `nsteps`, `timenow`, and `doexit`. The same routine is also used in `PDAF_get_state`.
     80 * `status`: The integer status flag. It is zero, if `PDAFomi_assimilate_global` is exited without errors.
     81
     82
     83
     84=== `PDAFomi_assimilate_hyb3dvar_estkf` ===
     85
     86This routine is called for the case of transforming the ensemble perturbations using the global ESTKF. 
     87
     88The interface is:
     89{{{
     90SUBROUTINE PDAFomi_assimilate_hyb3dvar_lestkf(U_collect_state, U_distribute_state, &
     91                                 U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     92                                 U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, &
     93                                 U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, &
     94                                 U_prepoststep, U_next_observation, outflag)
     95}}}
     96with the following arguments:
     97 * [#U_collect_statecollect_state_pdaf.F90 U_collect_state]: The name of the user-supplied routine that initializes a state vector from the array holding the ensemble of model states from the model fields. This is basically the inverse operation to `U_distribute_state` used in `PDAF_get_state` as well as here.
     98 * [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]:  The name of a user supplied routine that initializes the model fields from the array holding the ensemble of model state vectors.
     99 * [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]: The name of the user-supplied routine that initializes the observation information and provides the size of observation vector
     100 * [#U_cvt_enscvt_ens_pdaf.F90 U_cvt_ens]: The name of the user-supplied routine that applies the ensemble control-vector transformation (square-root of the B-matrix) on some control vector to obtain a state vector.
     101 * [#U_cvt_adj_enscvt_adj_ens_pdaf.F90 U_cvt_adj_ens]: The name of the user-supplied routine that applies the adjoint ensemble control-vector transformation (with square-root of the B-matrix) on some state vector to obtain the control vector.
     102 * [#U_cvtcvt_pdaf.F90 U_cvt]: The name of the user-supplied routine that applies the control-vector transformation (square-root of the B-matrix) on some control vector to obtain a state vector.
     103 * [#U_cvt_adjcvt_adj_pdaf.F90 U_cvt_adj]: The name of the user-supplied routine that applies the adjoint control-vector transformation (with square-root of the B-matrix) on some state vector to obtain the control vector.
     104 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi]: The name of the user-supplied routine that acts as the observation operator on some state vector
     105 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the linearized observation operator on some state vector
     106 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the adjoint observation operator on some state vector
     107 * [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep]: The name of the pre/poststep routine as in `PDAF_get_state`
     108 * [#U_next_observationnext_observation.F90 U_next_observation]: The name of a user supplied routine that initializes the variables `nsteps`, `timenow`, and `doexit`. The same routine is also used in `PDAF_get_state`.
     109 * `status`: The integer status flag. It is zero, if `PDAFomi_assimilate_global` is exited without errors.
     110
     111Note that the interface of `PDAFomi_assimilate_en3dvar_estkf` is identical to that of `PDAFomi_assimilate_3dvar` apart from using the routines `U_cvt_ens` and `U_cvt_adj_ens` in case of the ensemble variational method.
     112
     113
     114=== `PDAFomi_put_state_hyb3dvar_lestkf` ===
     115
     116When the 'flexible' implementation variant is chosen for the assimilation system, the routine `PDAFomi_put_state_*` has to be used instead of `PDAFomi_assimilate_*`. The general aspects of the filter specific routines `PDAF_put_state_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration]. The interface of the routine is identical with that of `PDAF_assimilate_*` with the exception the specification of the user-supplied routines `U_distribute_state` and `U_next_observation` are missing.
     117
     118The interface when using one of the global filters is the following:
     119{{{
     120  SUBROUTINE PDAFomi_put_state_hyb3dvar_lestkf(U_collect_state, &
     121                                 U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     122                                 U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, &
     123                                 U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, &
     124                                 U_init_n_domains_p, U_init_dim_l, U_init_dim_obs_l_pdafomi, &
     125                                 U_g2l_state, U_l2g_state, U_prepoststep, outflag)
     126}}}
     127
     128=== `PDAFomi_put_state_hyb3dvar_estkf` ===
     129
     130The interface of this routine is analogous to that of `PDAFomi_assimilate_en3dvar_estkf'. Thus it is identical to this routine with the exception the specification of the user-supplied routines `U_distribute_state` and `U_next_observation` are missing.
     131
     132The interface when using one of the global filters is the following:
     133{{{
     134  SUBROUTINE PDAFomi_put_state_hyb3dvar_estkf(U_collect_state, &
     135                                 U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     136                                 U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, &
     137                                 U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, &
     138                                 U_prepoststep, outflag)
     139}}}
     140
     141== User-supplied routines ==
     142
     143Here all user-supplied routines are described that are required in the call to the assimilation routines for hybrid 3D-Var. For some of the generic routines, we link to the page on [ModifyModelforEnsembleIntegration modifying the model code for the ensemble integration].
     144
     145To indicate user-supplied routines we use the prefix `U_`. In the template directory `templates/` as well as in the tutorial implementations in `tutorial/` these routines exist without the prefix, but with the extension `_pdaf.F90`. The user-routines relating to OMI are collected in the file `callback_obs_pdafomi.F90`. In the section titles below we provide the name of the template file in parentheses.
     146
     147In the subroutine interfaces some variables appear with the suffix `_p`. This suffix indicates that the variable is particular to a model sub-domain, if a domain decomposed model is used. Thus, the value(s) in the variable will be different for different model sub-domains.
     148
     149
     150=== `U_collect_state` (collect_state_pdaf.F90) ===
     151
     152This routine is independent of the filter algorithm used.
     153
     154See the page on [InsertAnalysisStep#U_collect_statecollect_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     155
     156
     157=== `U_distribute_state` (distribute_state_pdaf.F90) ===
     158
     159This routine is independent of the filter algorithm used.
     160
     161See the page on [InsertAnalysisStep#U_distribute_statedistribute_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     162
     163
     164=== `U_init_dim_obs_pdafomi` (callback_obs_pdafomi.F90) ===
     165
     166This is a call-back routine for PDAF-OMI initializing the observation information. The routine just calls a routine from the observation module for each observation type.
     167
     168See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     169
     170
     171
     172=== `U_obs_op_pdafomi` (callback_obs_pdafomi.F90) ===
     173
     174This is a call-back routine for PDAF-OMI applying the observation operator to the state vector. The routine calls a routine from the observation module for each observation type.
     175
     176See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     177
     178
     179
     180
     181=== `U_cvt_ens` (cvt_ens_pdaf.F90) ===
     182
     183The interface for this routine is:
     184{{{
     185SUBROUTINE cvt_ens_pdaf(iter, dim_p, dim_ens, dim_cv_ens_p, ens_p, cv_p, Vcv_p)
     186
     187  INTEGER, INTENT(in) :: iter               ! Iteration of optimization
     188  INTEGER, INTENT(in) :: dim_p              ! PE-local observation dimension
     189  INTEGER, INTENT(in) :: dim_ens            ! Ensemble size
     190  INTEGER, INTENT(in) :: dim_cv_ens_p       ! Dimension of control vector
     191  REAL, INTENT(in) :: ens_p(dim_p, dim_ens) ! PE-local ensemble
     192  REAL, INTENT(in) :: cv_p(dim_cv_ens_p)    ! PE-local control vector
     193  REAL, INTENT(inout) :: Vcv_p(dim_p)       ! PE-local state increment
     194}}}
     195
     196The routine is called during the analysis step during the iterative minimization of the cost function.
     197It has to apply the control vector transformation to the control vector and return the transformed result vector. Usually this transformation is the multiplication with the square-root of the background error covariance matrix '''B'''. For the 3D Ensemble Var, this square root is usually expressed through the ensemble.
     198
     199If the control vector is decomposed in case of parallelization it first needs to the gathered on each processor and afterwards the transformation is computed on the potentially domain-decomposed state vector.
     200
     201
     202=== `U_cvt_adj` (cvt_adj_pdaf.F90) ===
     203
     204The interface for this routine is:
     205{{{
     206SUBROUTINE cvt_adj_ens_pdaf(iter, dim_p, dim_ens, dim_cv_ens_p, ens_p, Vcv_p, cv_p)
     207
     208  INTEGER, INTENT(in) :: iter                ! Iteration of optimization
     209  INTEGER, INTENT(in) :: dim_p               ! PE-local observation dimension
     210  INTEGER, INTENT(in) :: dim_ens             ! Ensemble size
     211  INTEGER, INTENT(in) :: dim_cv_ens_p        ! PE-local dimension of control vector
     212  REAL, INTENT(in) :: ens_p(dim_p, dim_ens)  ! PE-local ensemble
     213  REAL, INTENT(in)    :: Vcv_p(dim_p)        ! PE-local input vector
     214  REAL, INTENT(inout) :: cv_p(dim_cv_ens_p)  ! PE-local result vector
     215}}}
     216
     217The routine is called during the analysis step during the iterative minimization of the cost function.
     218It has to apply the adjoint control vector transformation to a state vector and return the control vector. Usually this transformation is the multiplication with transpose of the square-root of the background error covariance matrix '''B'''. or the 3D Ensemble Var, this square root is usually expressed through the ensemble.
     219
     220If the state vector is decomposed in case of parallelization one needs to take care that the application of the trasformation is complete. This usually requries a comminucation with MPI_Allreduce to obtain a global sun.
     221
     222
     223
     224=== `U_cvt` (cvt_pdaf.F90) ===
     225
     226The interface for this routine is:
     227{{{
     228SUBROUTINE cvt_pdaf(iter, dim_p, dim_cvec, cv_p, Vv_p)
     229
     230  INTEGER, INTENT(in) :: iter           ! Iteration of optimization
     231  INTEGER, INTENT(in) :: dim_p          ! PE-local observation dimension
     232  INTEGER, INTENT(in) :: dim_cvec       ! Dimension of control vector
     233  REAL, INTENT(in)    :: cv_p(dim_cvec) ! PE-local control vector
     234  REAL, INTENT(inout) :: Vv_p(dim_p)    ! PE-local result vector (state vector increment)
     235}}}
     236
     237The routine is called during the analysis step during the iterative minimization of the cost function.
     238It has to apply the control vector transformation to the control vector and return the transformed result vector. Usually this transformation is the multiplication with the square-root of the background error covariance matrix '''B'''.
     239
     240If the control vector is decomposed in case of parallelization it first needs to the gathered on each processor and afterwards the transformation is computed on the potentially domain-decomposed state vector.
     241
     242
     243=== `U_cvt_adj` (cvt_adj_pdaf.F90) ===
     244
     245The interface for this routine is:
     246{{{
     247SUBROUTINE cvt_adj_pdaf(iter, dim_p, dim_cvec, Vv_p, cv_p)
     248
     249  INTEGER, INTENT(in) :: iter           ! Iteration of optimization
     250  INTEGER, INTENT(in) :: dim_p          ! PE-local observation dimension
     251  INTEGER, INTENT(in) :: dim_cvec       ! Dimension of control vector
     252  REAL, INTENT(in)    :: Vv_p(dim_p)    ! PE-local result vector (state vector increment)
     253  REAL, INTENT(inout) :: cv_p(dim_cvec) ! PE-local control vector
     254}}}
     255
     256The routine is called during the analysis step during the iterative minimization of the cost function.
     257It has to apply the adjoint control vector transformation to a state vector and return the control vector. Usually this transformation is the multiplication with transposed of the square-root of the background error covariance matrix '''B'''.
     258
     259If the state vector is decomposed in case of parallelization one needs to take care that the application of the trasformation is complete. This usually requries a comminucation with MPI_Allreduce to obtain a global sun.
     260
     261
     262
     263
     264=== `U_obs_op_lin_pdafomi` (callback_obs_pdafomi.F90) ===
     265
     266This is a call-back routine for PDAF-OMI applying the linearized observation operator to the state vector. The routine calls a routine from the observation module for each observation type. If the full observation operator is lineaer the same operator can be used here.
     267
     268See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     269
     270
     271=== `U_obs_op_adj_pdafomi` (callback_obs_pdafomi.F90) ===
     272
     273This is a call-back routine for PDAF-OMI applying the adjoint observation operator to some vector inthe observation space. The routine calls a routine from the observation module for each observation type.
     274
     275See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     276
     277
     278
     279=== `U_init_n_domains` (init_n_domains_pdaf.F90) ===
     280
     281The interface for this routine is:
     282{{{
     283SUBROUTINE init_n_domains(step, n_domains_p)
     284
     285  INTEGER, INTENT(in)  :: step        ! Current time step
     286  INTEGER, INTENT(out) :: n_domains_p ! Number of analysis domains for local model sub-domain
     287}}}
     288
     289The routine is called during the analysis step before the loop over the local analysis domains is entered.
     290It has to provide the number of local analysis domains. In case of a domain-decomposed model the number of local analysis domain for the model sub-domain of the calling process has to be initialized.
     291
     292Hints:
     293 * As a simple case, if the localization is only performed horizontally, the local analysis domains can be single vertical columns of the model grid. In this case, `n_domains_p` is simply the number of vertical columns in the local model sub-domain.
     294
     295
     296=== `U_init_dim_l` (init_dim_l_pdaf.F90) ===
     297
     298The interface for this routine is:
     299{{{
     300SUBROUTINE init_dim_l(step, domain_p, dim_l)
     301
     302  INTEGER, INTENT(in)  :: step        ! Current time step
     303  INTEGER, INTENT(in)  :: domain_p    ! Current local analysis domain
     304  INTEGER, INTENT(out) :: dim_l       ! Local state dimension
     305}}}
     306
     307The routine is called during the loop over the local analysis domains in the analysis step.
     308It has to provide in `dim_l` the dimension of the state vector for the local analysis domain with index `domain_p`.
     309
     310Hints:
     311 * For sharing through the module 'mod_assimilation', we further initialize an array 'coords_l' containing the coordinates that describe the local domain. These coordinates have to describe one location in space that is used in the OMI observation modules to compute the distance from observations. This requires that the coordinates in 'coords_l' have the same units as those used for the observations.
     312 * Any form of local domain is possible as long as it can be describe as a single location. If observations are only horizontally distributed (a common situation with satellite data in the ocean), the local analysis domain can be a single vertical column of the model grid. In this case, the size of the state in the local analysis domain will be just the number of vertical grid points at this location and the horizontal coordinates are used in 'coords_l'
     313 * Further, we recommend to initialize an array containing the indices of the elements of the local state vector in the global (or domain-decomposed) state vector (`id_lstate_in_pstate` in the template files). This array is also shared through 'mod_assimilation'.
     314
     315
     316=== `U_init_dim_obs_l_pdafomi` (callback_obs_pdafomi.F90) ===
     317
     318This is a call-back routine for PDAF-OMI that initializes the local observation vector. The routine calls a routine from the observation module for each observation type.
     319
     320See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     321
     322
     323=== `U_g2l_state` (g2l_state_pdaf.F90) ===
     324
     325The interface for this routine is:
     326{{{
     327SUBROUTINE g2l_state(step, domain_p, dim_p, state_p, dim_l, state_l)
     328
     329  INTEGER, INTENT(in) :: step           ! Current time step
     330  INTEGER, INTENT(in) :: domain_p       ! Current local analysis domain
     331  INTEGER, INTENT(in) :: dim_p          ! State dimension for model sub-domain
     332  INTEGER, INTENT(in) :: dim_l          ! Local state dimension
     333  REAL, INTENT(in)    :: state_p(dim_p) ! State vector for model sub-domain
     334  REAL, INTENT(out)   :: state_l(dim_l) ! State vector on local analysis domain
     335}}}
     336
     337The routine is called during the loop over the local analysis domains in the analysis step. It has to provide the local state vector `state_l` that corresponds to the local analysis domain with index `domain_p`. Provided to the routine is the state vector `state_p`. With a domain decomposed model, this is the state for the local model sub-domain.
     338
     339Hints:
     340 * In the simple case that a local analysis domain is a single vertical column of the model grid, the operation in this routine would be to take out of `state_p` the data for the vertical column indexed by `domain_p`.
     341 * Usually, one can initialize the indices of the local state vector elements in the global state vector in `U_init_dim_l` and just use these here.
     342
     343
     344=== `U_l2g_state` (l2g_state_pdaf.F90) ===
     345
     346The interface for this routine is:
     347{{{
     348SUBROUTINE l2g_state(step, domain_p, dim_l, state_l, dim_p, state_p)
     349
     350  INTEGER, INTENT(in) :: step           ! Current time step
     351  INTEGER, INTENT(in) :: domain_p       ! Current local analysis domain
     352  INTEGER, INTENT(in) :: dim_p          ! State dimension for model sub-domain
     353  INTEGER, INTENT(in) :: dim_l          ! Local state dimension
     354  REAL, INTENT(in)    :: state_p(dim_p) ! State vector for model sub-domain
     355  REAL, INTENT(out)   :: state_l(dim_l) ! State vector on local analysis domain
     356}}}
     357
     358The routine is called during the loop over the local analysis domains in the analysis step. It has to initialize the part of the global state vector `state_p` that corresponds to the local analysis domain with index `domain_p`. Provided to the routine is the state vector `state_l` for the local analysis domain.
     359
     360Hints:
     361 * In the simple case that a local analysis domain is a single vertical column of the model grid, the operation in this routine would be to write into `state_p` the data for the vertical column indexed by `domain_p`.
     362 * Usually, one can initialize the indices of the local state vector elements in the global state vector in `U_init_dim_l` and just use these here.
     363
     364
     365
     366=== `U_prepoststep` (prepoststep_ens_pdaf.F90) ===
     367
     368The routine has already been described for modifying the model for the ensemble integration and for inserting the analysis step.
     369
     370See the page on [InsertAnalysisStep#U_prepoststepprepoststep_ens_pdaf.F90 inserting the analysis step] for the description of this routine.
     371
     372
     373=== `U_next_observation` (next_observation_pdaf.F90) ===
     374
     375This routine is independent of the filter algorithm used.
     376
     377See the page on [InsertAnalysisStep#U_next_observationnext_observation_pdaf.F90 inserting the analysis step] for the description of this routine.
     378
     379
     380== Execution order of user-supplied routines ==
     381
     382The user-supplied routines are essentially executed in the order they are listed in the interface to `PDAFomi_assimilate_3dvar`. The order can be important as some routines can perform preparatory work for later routines. For example, `U_init_dim_obs_pdafomi` prepares an index array that provides the information for executing the observation operator in `U_obs_op_pdafomi`. How this information is initialized is described in the documentation of OMI.
     383
     384Before the analysis step is called the following routine is executed:
     385 1. [#U_collect_statecollect_state_pdaf.F90 U_collect_state]
     386
     387The analysis step is executed when the ensemble integration of the forecast is completed. During the analysis step the following routines are executed in the given order:
     388 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the forecast ensemble, called with negative value of the time step)
     389 1. [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]
     390 1. [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi] (multiple calls, one for each ensemble member)
     391
     392Inside the analysis step the interative optimization is computed. This involves the repeated call of the routines:
     393 1. [#U_cvtcvt_pdaf.F90 U_cvt]
     394 1. [#U_cvt_enscvt_ens_pdaf.F90 U_cvt_ens]
     395 1. [#U_obs_op_lin_pdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]
     396 1. [#U_obs_op_adj_pdafomicallback_obs_pdafomi.F90 U_obs_op_adj_pdafomi]
     397 1. [#U_cvt_adjcvt_adj_pdaf.F90 U_cvt_adj]
     398 1. [#U_cvt_adj_enscvt_adj_ens_pdaf.F90 U_cvt_adj_ens]
     399
     400After the iterative optimization the following routines are executes to complte the analysis step:
     401 1. [#U_cvt_enscvt_pdaf.F90 U_cvt] (Call to the parameterized part of the control vector transform to compute the final state vector increment)
     402 1. [#U_cvt_enscvt_ens_pdaf.F90 U_cvt_ens] (Call to the eensemble-part of the control vector transform to compute the final state vector increment)
     403 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the analysis ensemble, called with (positive) value of the time step)
     404
     405The iterative optimization abovve computes an updated ensemble mean state. Subsequently, the ensemble perturbations are updated using the LESTKF or ESTKF. The execution of the routines for these filters is described for the LESTKF on the [wiki:ImplementAnalysisLocal page on implementing the local filter analysis step] and for the ESTKF on the [wiki:ImplementAnalysisGlobal page on implementing the global filter analysis step].
     406
     407In case of the routine `PDAFomi_assimilate_*`, the following routines are executed after the analysis step:
     408 1. [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]
     409 1. [#U_next_observationnext_observation_pdaf.F90 U_next_observation]