Changes between Initial Version and Version 1 of ImplementAnalysis_3DVar


Ignore:
Timestamp:
Dec 8, 2021, 6:21:17 PM (2 years ago)
Author:
lnerger
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • ImplementAnalysis_3DVar

    v1 v1  
     1= Implementation of the Analysis Step for 3D-Var with OMI =
     2
     3{{{
     4#!html
     5<div class="wiki-toc">
     6<h4>Implementation Guide</h4>
     7<ol><li><a href="ImplementationGuide">Main page</a></li>
     8<li><a href="AdaptParallelization">Adaptation of the parallelization</a></li>
     9<li><a href="InitPdaf">Initialization of PDAF</a></li>
     10<li><a href="ModifyModelforEnsembleIntegration">Modifications for ensemble integration</a></li>
     11<li><a href="OMI_ImplementationofAnalysisStep">Implementation of the analysis step with OMI</a></li>
     12<ol>
     13<li><a href="ImplementAnalysisGlobal">Implementation for Global Filters</a></li>
     14<li><a href="ImplementAnalysisLocal">Implementation for Local Filters</a></li>
     15<li><a href="ImplementAnalysislenkfOmi">Implementation for LEnKF</a></li>
     16<li>Implementation for 3D-Var</li>
     17<li><a href="PDAF_OMI_Overview">PDAF-OMI Overview</a></li>
     18</ol>
     19<li><a href="AddingMemoryandTimingInformation">Memory and timing information</a></li>
     20<li><a href="EnsembleGeneration">Ensemble Generation</a></li>
     21<li><a href="DataAssimilationDiagnostics">Diagnostics</a></li>
     22</ol>
     23</div>
     24}}}
     25
     26[[PageOutline(2-3,Contents of this page)]]
     27
     28== Overview ==
     29
     30With Version 2.0 with introduced 3D variational assimilation methods to PDAF. There are genenerally three different variants: parameterized 3D-Var, 3D Ensemble Var, and hybrid (parameterized + ensemble) 3D-Var.
     31
     32This page describes the implementation of the analysis step for the parameterized 3D-Var using PDAF-OMI.
     33
     34For the analysis step of 3D-Var we need different operations related to the observations. These operations are requested by PDAF by call-back routines supplied by the user and provided in the OMI structure. The names of the routines that are provided by the user are specified in the call to the routine `PDAFomi_assimilate_3dvar` in the fully-parallel implementation (or `PDAFomi_put_state_3dvar` for the 'flexible' implementation) that was discussed before. With regard to the parallelization, all these routines (except `U_collect_state`, `U_distribute_state`, and `U_next_observation`) are executed by the filter processes (`filterpe=.true.`) only.
     35
     36For completeness we discuss here all user-supplied routines that are specified in the interface to `PDAFomi_assimilate_3dvar`. Thus, some of the user-supplied routines that are explained on the page describing the modification of the model code for the ensemble integration are repeated here.
     37
     38
     39== `PDAFomi_assimilate_3dvar` ==
     40
     41The general aspects of the filter (or solver) specific routines `PDAF_assimilate_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration] and its sub-page on [InsertAnalysisStep inserting the analysis step]. The routine is used in the fully-parallel implementation variant of the data assimilation system. When the 'flexible' implementation variant is used, the routines `PDAF_put_state_*` is used as described further below. Here, we list the full interface of the routine. Subsequently, the user-supplied routines specified in the call is explained.
     42
     43The interface for using the parameterized 3D-Var is:
     44{{{
     45  SUBROUTINE PDAFomi_assimilate_3dvar(collect_state_pdaf, distribute_state_pdaf, &
     46                                 U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     47                                 U_cvt, U_cvt_adj, U_obs_op_lin_pdafomi, obs_op_adj_pdafomi, &
     48                                 prepoststep_pdaf, next_observation_pdaf, outflag)
     49}}}
     50with the following arguments:
     51 * [#U_collect_statecollect_state_pdaf.F90 U_collect_state]: The name of the user-supplied routine that initializes a state vector from the array holding the ensemble of model states from the model fields. This is basically the inverse operation to `U_distribute_state` used in `PDAF_get_state` as well as here.
     52 * [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]:  The name of a user supplied routine that initializes the model fields from the array holding the ensemble of model state vectors.
     53 * [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]: The name of the user-supplied routine that initializes the observation information and provides the size of observation vector
     54 * [U_cvt]: The name of the user-supplied routine that applies the control-vector transformation (square-root of the B-matrix) on some control vector to obtain a state vector.
     55 * [U_cvt_adj]: The name of the user-supplied routine that applies the adjoint control-vector transformation (with square-root of the B-matrix) on some state vector to obtain the control vector.
     56 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi]: The name of the user-supplied routine that acts as the observation operator on some state vector
     57 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the linearized observation operator on some state vector
     58 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the adjoint observation operator on some state vector
     59 * [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep]: The name of the pre/poststep routine as in `PDAF_get_state`
     60 * [#U_next_observationnext_observation.F90 U_next_observation]: The name of a user supplied routine that initializes the variables `nsteps`, `timenow`, and `doexit`. The same routine is also used in `PDAF_get_state`.
     61 * `status`: The integer status flag. It is zero, if `PDAFomi_assimilate_global` is exited without errors.
     62
     63
     64== `PDAFomi_put_state_global` ==
     65
     66When the 'flexible' implementation variant is chosen for the assimilation system, the routine `PDAFomi_put_state_global` has to be used instead of `PDAFomi_assimilate_global`. The general aspects of the filter specific routines `PDAF_put_state_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration]. The interface of the routine is identical with that of `PDAF_assimilate_global` with the exception the specification of the user-supplied routines `U_distribute_state` and `U_next_observation` are missing.
     67
     68The interface when using one of the global filters is the following:
     69{{{
     70  SUBROUTINE PDAFomi_assimilate_3dvar(collect_state_pdaf, &
     71                                 U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     72                                 U_cvt, U_cvt_adj, U_obs_op_lin_pdafomi, obs_op_adj_pdafomi, &
     73                                 prepoststep_pdaf, outflag)
     74}}}
     75
     76== User-supplied routines ==
     77
     78Here all user-supplied routines are described that are required in the call to `PDAFomi_assimilate_3dvar`. For some of the generic routines, we link to the page on [ModifyModelforEnsembleIntegration modifying the model code for the ensemble integration].
     79
     80To indicate user-supplied routines we use the prefix `U_`. In the template directory `templates/` as well as in the tutorial implementations in `tutorial/` these routines exist without the prefix, but with the extension `_pdaf.F90`. The user-routines relating to OMI are collected in the file `callback_obs_pdafomi.F90`. In the section titles below we provide the name of the template file in parentheses.
     81
     82In the subroutine interfaces some variables appear with the suffix `_p`. This suffix indicates that the variable is particular to a model sub-domain, if a domain decomposed model is used. Thus, the value(s) in the variable will be different for different model sub-domains.
     83
     84
     85=== `U_collect_state` (collect_state_pdaf.F90) ===
     86
     87This routine is independent of the filter algorithm used.
     88
     89See the page on [InsertAnalysisStep#U_collect_statecollect_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     90
     91
     92=== `U_distribute_state` (distribute_state_pdaf.F90) ===
     93
     94This routine is independent of the filter algorithm used.
     95
     96See the page on [InsertAnalysisStep#U_distribute_statedistribute_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     97
     98
     99=== `U_init_dim_obs_pdafomi` (callback_obs_pdafomi.F90) ===
     100
     101This is a call-back routine for PDAF-OMI initializing the observation information. The routine just calls a routine from the observation module for each observation type.
     102
     103See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     104
     105
     106
     107=== `U_obs_op_pdafomi` (callback_obs_pdafomi.F90) ===
     108
     109This is a call-back routine for PDAF-OMI applying the observation operator to the state vector. The routine calls a routine from the observation module for each observation type.
     110
     111See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     112
     113
     114
     115
     116=== `U_cvt` (cvt_pdaf.F90) ===
     117
     118The interface for this routine is:
     119{{{
     120SUBROUTINE cvt_pdaf(iter, dim_p, dim_cvec, cv_p, Vv_p)
     121
     122  INTEGER, INTENT(in) :: iter           ! Iteration of optimization
     123  INTEGER, INTENT(in) :: dim_p          ! PE-local observation dimension
     124  INTEGER, INTENT(in) :: dim_cvec       ! Dimension of control vector
     125  REAL, INTENT(in)    :: cv_p(dim_cvec) ! PE-local control vector
     126  REAL, INTENT(inout) :: Vv_p(dim_p)    ! PE-local result vector (state vector increment)
     127}}}
     128
     129The routine is called during the analysis step during the iterative minimization of the cost function.
     130It has to apply the control vector transformation to the control vector and return the transformed result vector. Usually this transformation is the multiplication with the square-root of the background error covariance matrix '''B'''.
     131
     132If the control vector is decomposed in case of parallelization it first needs to the gathered on each processor and afterwards the transformation is computed on the potentially domain-decomposed state vector.
     133
     134
     135=== `U_cvt_adj` (cvt_adj_pdaf.F90) ===
     136
     137The interface for this routine is:
     138{{{
     139SUBROUTINE cvt_adj_pdaf(iter, dim_p, dim_cvec, Vv_p, cv_p)
     140
     141  INTEGER, INTENT(in) :: iter           ! Iteration of optimization
     142  INTEGER, INTENT(in) :: dim_p          ! PE-local observation dimension
     143  INTEGER, INTENT(in) :: dim_cvec       ! Dimension of control vector
     144  REAL, INTENT(in)    :: Vv_p(dim_p)    ! PE-local result vector (state vector increment)
     145  REAL, INTENT(inout) :: cv_p(dim_cvec) ! PE-local control vector
     146}}}
     147
     148The routine is called during the analysis step during the iterative minimization of the cost function.
     149It has to apply the adjoint control vector transformation to a state vector and return the control vector. Usually this transformation is the multiplication with transposed of the square-root of the background error covariance matrix '''B'''.
     150
     151If the control vector is decomposed in case of parallelization it first needs to the gathered on each processor and afterwards the transformation is computed on the potentially domain-decomposed state vector
     152
     153See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     154
     155
     156=== `U_obs_op_lin_pdafomi` (callback_obs_pdafomi.F90) ===
     157
     158This is a call-back routine for PDAF-OMI applying the linearized observation operator to the state vector. The routine calls a routine from the observation module for each observation type. If the full observation operator is lineaer the same operator can be used here.
     159
     160See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     161
     162
     163=== `U_obs_op_adj_pdafomi` (callback_obs_pdafomi.F90) ===
     164
     165This is a call-back routine for PDAF-OMI applying the adjoint observation operator to some vector inthe observation space. The routine calls a routine from the observation module for each observation type.
     166
     167See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     168
     169
     170=== `U_prepoststep` (prepoststep_ens_pdaf.F90) ===
     171
     172The routine has already been described for modifying the model for the ensemble integration and for inserting the analysis step.
     173
     174See the page on [InsertAnalysisStep#U_prepoststepprepoststep_ens_pdaf.F90 inserting the analysis step] for the description of this routine.
     175
     176
     177=== `U_next_observation` (next_observation_pdaf.F90) ===
     178
     179This routine is independent of the filter algorithm used.
     180
     181See the page on [InsertAnalysisStep#U_next_observationnext_observation_pdaf.F90 inserting the analysis step] for the description of this routine.
     182
     183
     184== Execution order of user-supplied routines ==
     185
     186The user-supplied routines are essentially executed in the order they are listed in the interface to `PDAFomi_assimilate_global`. The order can be important as some routines can perform preparatory work for later routines. For example, `U_init_dim_obs_pdafomi` prepares an index array that provides the information for executing the observation operator in `U_obs_op_pdafomi`. How this information is initialized is described in the documentation of OMI.
     187
     188Before the analysis step is called the following routine is executed:
     189 1. [#U_collect_statecollect_state_pdaf.F90 U_collect_state]
     190
     191The analysis step is executed when the ensemble integration of the forecast is completed. During the analysis step the following routines are executed in the given order:
     192 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the forecast ensemble, called with negative value of the time step)
     193 1. [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]
     194 1. [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi] (multiple calls, one for each ensemble member)
     195 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the analysis ensemble, called with (positive) value of the time step)
     196
     197In case of the routine `PDAFomi_assimilate_global`, the following routines are executed after the analysis step:
     198 1. [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]
     199 1. [#U_next_observationnext_observation_pdaf.F90 U_next_observation]