Changes between Initial Version and Version 1 of ImplementAnalysisLocal_untilPDAF221


Ignore:
Timestamp:
Sep 19, 2024, 2:00:34 PM (2 months ago)
Author:
lnerger
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • ImplementAnalysisLocal_untilPDAF221

    v1 v1  
     1= Implementation of the Analysis Step for the Local Filters with OMI =
     2
     3{{{
     4#!html
     5<div class="wiki-toc">
     6<h4>Implementation Guide</h4>
     7<ol><li><a href="ImplementationGuide">Main page</a></li>
     8<li><a href="AdaptParallelization">Adaptation of the parallelization</a></li>
     9<li><a href="InitPdaf">Initialization of PDAF</a></li>
     10<li><a href="ModifyModelforEnsembleIntegration">Modifications for ensemble integration</a></li>
     11<li><a href="OMI_ImplementationofAnalysisStep">Implementation of the analysis step</a></li>
     12<ol>
     13<li> <a href="ImplementFilterAnalysisOverview"> General overview for ensemble filters</a></li>
     14<ol>
     15<li><a href="ImplementAnalysisGlobal">Implementation for Global Filters</a></li>
     16<li>Implementation for Local Filters</li>
     17<li><a href="ImplementAnalysislenkfOmi">Implementation for LEnKF</a></li>
     18</ol>
     19<li> <a href="Implement3DVarAnalysisOverview"> General overview for 3D-Var methods</a></li>
     20<ol>
     21<li><a href="ImplementAnalysis_3DVar">Implementation for 3D-Var</a></li>
     22<li><a href="ImplementAnalysis_3DEnVar">Implementation for 3D Ensemble Var</a></li>
     23<li><a href="ImplementAnalysis_Hyb3DVar">Implementation for Hybrid 3D-Var</a></li>
     24</ol>
     25<li><a href="PDAF_OMI_Overview">PDAF-OMI Overview</a></li>
     26</ol>
     27<li><a href="AddingMemoryandTimingInformation">Memory and timing information</a></li>
     28<li><a href="EnsembleGeneration">Ensemble Generation</a></li>
     29<li><a href="DataAssimilationDiagnostics">Diagnostics</a></li>
     30</ol>
     31</div>
     32}}}
     33
     34
     35[[PageOutline(2-3,Contents of this page)]]
     36
     37== Overview ==
     38
     39This documentation describes the implementation with OMI as it was standard since the introduction of PDAF-OMI in version 1.16 and until and including PDAF version 2.2.1. With PDAF 2.3 we introduced the [wiki:PDAFlocal_overview PDAFlocal interface], which simplifies the implemenation of the local analysis. This is described on the current page on the [wiki:ImplementAnalysisLocal Implementation for Local Filters].
     40
     41PDAF-OMI provides generic routines for the analysis step, which only distinguish global and local filters. This page describes the implementation of the analysis step for domain-local filters (LESTKF, LETKF, LNETF, LSEIK).
     42
     43For the analysis step of the local filters we need different operations related to the observations. These operations are requested by PDAF by call-back routines supplied by the user and provided in the OMI structure. The names of the routines that are provided by the user are specified in the call to the routine `PDAFomi_assimilate_local` in the fully-parallel implementation (or `PDAFomi_put_state_local` for the 'flexible' implementation) that was discussed before. With regard to the parallelization, all these routines (except `U_collect_state`, `U_distribute_state`, and `U_next_observation`) are executed by the filter processes (`filterpe=.true.`) only.
     44
     45For completeness we discuss here all user-supplied routines that are specified in the interface to `PDAFomi_assimilate_local`. Many of the routines are identical to those used for the global filters. Hence, when the user-supplied routines for the global filters have been already implemented, one can base on these routines to speed up the implementation. Due to this, it can also be reasonable to first fully implement a global filter version and subsequently implement the corresponding localized filter by modifying and extending the global routines.
     46
     47
     48== `PDAFomi_assimilate_local` ==
     49
     50The general aspects of the filter-specific routines `PDAF_assimilate_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration] and its sub-page on [InsertAnalysisStep inserting the analysis step].  The routine is used in the fully-parallel implementation variant of the data assimilation system. When the 'flexible' implementation variant is used, the routines `PDAF_put_state_*' is used as described further below.
     51
     52The interface for the routine `PDAFomi_assimilate_local` contains names for routines that operate on the local analysis domains (marked by the suffix `_l`). Further there are routines that convert between a local and a global model state vector (`U_g2l_state` and `U_l2g_state`).
     53Here, we list the full interface of the routine. Subsequently, the user-supplied routines specified in the call is explained.
     54
     55The interface when using one of the local filters is the following:
     56{{{
     57  SUBROUTINE PDAFomi_assimilate_local(U_collect_state, U_distribute_state, &
     58                                  U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     59                                  U_prepoststep, U_init_n_domains, U_init_dim_l, &
     60                                  U_init_dim_obs_l_pdafomi, U_g2l_state, U_l2g_state, &
     61                                  U_next_observation, status)
     62}}}
     63with the following arguments:
     64 * [#U_collect_statecollect_state_pdaf.F90 U_collect_state]: The name of the user-supplied routine that initializes a state vector from the array holding the ensemble of model states from the model fields. This is basically the inverse operation to `U_distribute_state` used in [ModifyModelforEnsembleIntegration#PDAF_get_state PDAF_get_state] and also here.
     65 * [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]:  The name of a user supplied routine that initializes the model fields from the array holding the ensemble of model state vectors.
     66 * [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]: The name of the user-supplied routine that initializes the observation information and provides the size of observation vector
     67 * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi]: The name of the user-supplied routine that acts as the observation operator on some state vector
     68 * [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep]: The name of the pre/poststep routine as in `PDAF_get_state`
     69 * [#U_init_n_domainsinit_n_domains_pdaf.F90 U_init_n_domains]: The name of the routine that provides the number of local analysis domains
     70 * [#U_init_dim_linit_dim_l_pdaf.F90 U_init_dim_l]: The name of the routine that provides the state dimension for a local analysis domain
     71 * [#U_init_dim_obs_l_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_l_pdafomi]: The name of the routine that initializes the size of the observation vector for a local analysis domain
     72 * [#U_g2l_stateg2l_state_pdaf.F90 U_g2l_state]: The name of the routine that initializes a local state vector from the global state vector
     73 * [#U_l2g_statel2g_state_pdaf.F90 U_l2g_state]: The name of the routine that initializes the corresponding part of the global state vector from the provided local state vector
     74 * [#U_next_observationnext_observation.F90 U_next_observation]: The name of a user supplied routine that initializes the variables `nsteps`, `timenow`, and `doexit`. The same routine is also used in `PDAF_get_state`.
     75 * `status`: The integer status flag. It is zero, if `PDAFomi_assimilate_local` is exited without errors.
     76
     77Note:
     78 * The order of the routine names does not show the order in which these routines are executed. See the [#Executionorderofuser-suppliedroutines section on the order of the execution] at the bottom of this page.
     79
     80
     81
     82== `PDAFomi_put_state_local` ==
     83
     84When the 'flexible' implementation variant is chosen for the assimilation system, the routine `PDAFomi_put_state_local` has to be used instead of `PDAFomi_assimilate_local`. The general aspects of the filter specific routines `PDAF_put_state_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration]. The interface of the routine is identical with that of `PDAFomi_assimilate_local` with the exception the specification of the user-supplied routines `U_distribute_state` and `U_next_observation` are missing.
     85
     86The interface when using one of the local filters is the following:
     87{{{
     88  SUBROUTINE PDAFomi_put_state_local(U_collect_state, &
     89                                  U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
     90                                  U_prepoststep, U_init_n_domains, U_init_dim_l, &
     91                                  U_init_dim_obs_l_pdafomi, U_g2l_state, U_l2g_state, &
     92                                  status)
     93}}}
     94
     95== User-supplied routines ==
     96
     97Here, all user-supplied routines are described that are required in the call to `PDAFomi_assimilate_local` or `PDAFomi_put_state_local`. For some of the generic routines, we link to the page on [ModifyModelforEnsembleIntegration modifying the model code for the ensemble integration].
     98
     99To indicate user-supplied routines we use the prefix `U_`. In the tutorials in `tutorial/` and in the template directory `templates/` these routines exist without the prefix, but with the extension `_pdaf`. The files are named correspondingly. The user-routines relating to OMI are collected in the file callback_obs_pdafomi.F90. In the section titles below we provide the name of the template file in parentheses.
     100
     101In the subroutine interfaces some variables appear with the suffix `_p` (short for 'process'). This suffix indicates that the variable is particular to a model sub-domain, if a domain decomposed model is used. In addition, there will be variables with suffix `_l` (indicating 'local').
     102
     103
     104=== `U_collect_state` (collect_state_pdaf.F90) ===
     105
     106This routine is independent of the filter algorithm used.
     107
     108See the page on [InsertAnalysisStep#U_collect_statecollect_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     109
     110
     111=== `U_distribute_state` (distribute_state_pdaf.F90) ===
     112
     113This routine is independent of the filter algorithm used.
     114
     115See the page on [InsertAnalysisStep#U_distribute_statedistribute_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     116
     117
     118=== `U_init_dim_obs_pdafomi` (callback_obs_pdafomi.F90) ===
     119
     120This is a call-back routine for PDAF-OMI initializing the observation information. The routine just calls a routine from the observation module for each observation type.
     121
     122See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     123
     124
     125
     126=== `U_obs_op_pdafomi` (callback_obs_pdafomi.F90) ===
     127
     128This is a call-back routine for PDAF-OMI applying the observation operator to the state vector. The routine calls a routine from the observation module for each observation type.
     129
     130See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     131
     132
     133=== `U_prepoststep` (prepoststep_ens_pdaf.F90) ===
     134
     135The routine has already been described for modifying the model for the ensemble integration and for inserting the analysis step.
     136
     137See the page on [InsertAnalysisStep#U_prepoststepprepoststep_ens_pdaf.F90 inserting the analysis step] for the description of this routine.
     138
     139
     140
     141=== `U_init_n_domains` (init_n_domains_pdaf.F90) ===
     142
     143The interface for this routine is:
     144{{{
     145SUBROUTINE init_n_domains(step, n_domains_p)
     146
     147  INTEGER, INTENT(in)  :: step        ! Current time step
     148  INTEGER, INTENT(out) :: n_domains_p ! Number of analysis domains for local model sub-domain
     149}}}
     150
     151The routine is called during the analysis step before the loop over the local analysis domains is entered.
     152It has to provide the number of local analysis domains. In case of a domain-decomposed model the number of local analysis domain for the model sub-domain of the calling process has to be initialized.
     153
     154Hints:
     155 * As a simple case, if the localization is only performed horizontally, the local analysis domains can be single vertical columns of the model grid. In this case, `n_domains_p` is simply the number of vertical columns in the local model sub-domain.
     156
     157
     158=== `U_init_dim_l` (init_dim_l_pdaf.F90) ===
     159
     160The interface for this routine is:
     161{{{
     162SUBROUTINE init_dim_l(step, domain_p, dim_l)
     163
     164  INTEGER, INTENT(in)  :: step        ! Current time step
     165  INTEGER, INTENT(in)  :: domain_p    ! Current local analysis domain
     166  INTEGER, INTENT(out) :: dim_l       ! Local state dimension
     167}}}
     168
     169The routine is called during the loop over the local analysis domains in the analysis step.
     170For PDAF it has to provide in `dim_l` the dimension of the state vector for the local analysis domain with index `domain_p`.
     171
     172Hints:
     173 * For sharing through the module `mod_assimilation`, we further initialize an array `coords_l` containing the coordinates that describe the local domain.
     174  * These coordinates have to describe one location in space that is used in the OMI observation modules to compute the distance from observations.
     175  * The coordinates in `coords_l` have the same units as those used for the observations
     176  * For geographic distance computations, the unit of the coordinates needs to be radian, thus (0, 2*pi) or (-pi,pi) for longitude and (-pi/2, pi/2) for latitude.
     177 * Any form of local domain is possible as long as it can be describe as a single location.
     178  * If the local domain is a single grid point, `dim_l` will be the number of model variables at this grid point.
     179  * The local analysis domain can also be a single vertical column of the model grid if observations are only horizontally distributed (a common situation with satellite data in the ocean).
     180   * In this case, `dim_l` will be the number of vertical grid points at this location times the number of model fields that exist in the vertical, plus possible variables at e.g. the surface.
     181   * In this case only the horizontal coordinates are used in `coords_l`.
     182 * Further, we recommend to initialize an array containing the indices of the elements of the local state vector in the global (or domain-decomposed) state vector (`id_lstate_in_pstate` in the template files). This array is also shared through 'mod_assimilation'.
     183
     184
     185=== `U_init_dim_obs_l_pdafomi` (callback_obs_pdafomi.F90) ===
     186
     187This is a call-back routine for PDAF-OMI that initializes the local observation vector. The routine calls a routine from the observation module for each observation type.
     188
     189See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     190
     191
     192=== `U_g2l_state` (g2l_state_pdaf.F90) ===
     193
     194The interface for this routine is:
     195{{{
     196SUBROUTINE g2l_state(step, domain_p, dim_p, state_p, dim_l, state_l)
     197
     198  INTEGER, INTENT(in) :: step           ! Current time step
     199  INTEGER, INTENT(in) :: domain_p       ! Current local analysis domain
     200  INTEGER, INTENT(in) :: dim_p          ! State dimension for model sub-domain
     201  INTEGER, INTENT(in) :: dim_l          ! Local state dimension
     202  REAL, INTENT(in)    :: state_p(dim_p) ! State vector for model sub-domain
     203  REAL, INTENT(out)   :: state_l(dim_l) ! State vector on local analysis domain
     204}}}
     205
     206The routine is called during the loop over the local analysis domains in the analysis step. It has to provide the local state vector `state_l` that corresponds to the local analysis domain with index `domain_p`. Provided to the routine is the state vector `state_p`. With a domain decomposed model, this is the state for the local model sub-domain.
     207
     208Hints:
     209 * In the simple case that a local analysis domain is a single vertical column of the model grid, the operation in this routine would be to take out of `state_p` the data for the vertical column indexed by `domain_p`.
     210 * Usually, one can use the index array `id_lstate_in_pstate`, which is initialized in `U_init_dim_l`. The array holds the indices of the local state vector elements in the global state vector.
     211
     212
     213=== `U_l2g_state` (l2g_state_pdaf.F90) ===
     214
     215The interface for this routine is:
     216{{{
     217SUBROUTINE l2g_state(step, domain_p, dim_l, state_l, dim_p, state_p)
     218
     219  INTEGER, INTENT(in) :: step           ! Current time step
     220  INTEGER, INTENT(in) :: domain_p       ! Current local analysis domain
     221  INTEGER, INTENT(in) :: dim_p          ! State dimension for model sub-domain
     222  INTEGER, INTENT(in) :: dim_l          ! Local state dimension
     223  REAL, INTENT(in)    :: state_p(dim_p) ! State vector for model sub-domain
     224  REAL, INTENT(out)   :: state_l(dim_l) ! State vector on local analysis domain
     225}}}
     226
     227The routine is called during the loop over the local analysis domains in the analysis step. It has to initialize the part of the global state vector `state_p` that corresponds to the local analysis domain with index `domain_p`. Provided to the routine is the state vector `state_l` for the local analysis domain.
     228
     229Hints:
     230 * In the simple case that a local analysis domain is a single vertical column of the model grid, the operation in this routine would be to write into `state_p` the data for the vertical column indexed by `domain_p`.
     231 * Usually, one can use the index array `id_lstate_in_pstate`, which is initialized in `U_init_dim_l`. The array holds the indices of the local state vector elements in the global state vector.
     232
     233
     234=== `U_next_observation` (next_observation_pdaf.F90) ===
     235
     236This routine is independent of the filter algorithm used.
     237
     238See the page on [InsertAnalysisStep#U_next_observationnext_observation_pdaf.F90 inserting the analysis step] for the description of this routine.
     239
     240
     241== Execution order of user-supplied routines ==
     242
     243The user-supplied routines are executed in the order listed below. The order can be important as some routines can perform preparatory work for routines executed later on during the analysis. For example, `U_init_dim_l` can prepare an index array that provides the information how to localize a global state vector. Some hints one the efficient implementation strategy are given with the descriptions of the routine interfaces above.
     244
     245Before the analysis step is called the following is executed:
     246 1. [#U_collect_statecollect_state_pdaf.F90 U_collect_state] (called once for each ensemble member)
     247
     248When the ensemble integration of the forecast is completed, the analysis step is executed. Before the loop over all local analysis domains, the following routines are executed:
     249 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the forecast ensemble, called with negative value of the time step)
     250 1. [#U_init_n_domainsinit_n_domains_pdaf.F90 U_init_n_domains]
     251 1. [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]
     252 1. [#U_obs_op_pdadfomicallback_obs_pdafomi.F90 U_obs_op_pdafomi] (Called `dim_ens` times; once for each ensemble member)
     253
     254In the loop over all local analysis domains, it is executed for each local analysis domain:
     255 1. [#U_init_dim_linit_dim_l_pdaf.F90 U_init_dim_l]
     256 1. [#U_init_dim_obs_l_pdafomiinit_dim_obs_l_pdaf.F90 U_init_dim_obs_l_pdafomi]
     257 1. [#U_g2l_stateg2l_state_pdaf.F90 U_g2l_state] (Called `dim_ens+1` times: Once for each ensemble member and once for the mean state estimate)
     258 1. [#U_l2g_statel2g_state_pdaf.F90 U_l2g_state] (Called `dim_ens+1` times: Once for each ensemble member and once for the mean state estimate)
     259
     260After the loop over all local analysis domains, it is executed:
     261 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the analysis ensemble, called with (positive) value of the time step)
     262
     263In case of the routine `PDAFomi_assimilate_local`, the following routines are executed after the analysis step:
     264 1. [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]
     265 1. [#U_next_observationnext_observation_pdaf.F90 U_next_observation]