= Implementation of the Analysis Step for the Global Filters with OMI = {{{ #!html

Implementation Guide

  1. Main page
  2. Adaptation of the parallelization
  3. Initialization of PDAF
  4. Modifications for ensemble integration
  5. Implementation of the analysis step with OMI
    1. General overview for ensemble filters
      1. Implementation for Global Filters
      2. Implementation for Local Filters
      3. Implementation for LEnKF
    2. General overview for 3D-Var methods
      1. Implementation for 3D-Var
      2. Implementation for 3D Ensemble Var
      3. Implementation for Hybrid 3D-Var
    3. PDAF-OMI Overview
  6. Memory and timing information
  7. Ensemble Generation
  8. Diagnostics
}}} [[PageOutline(2-3,Contents of this page)]] == Overview == With Version 1.16 of PDAF we introduced PDAF-OMI (Observation Module Infrastructure). With OMI we provide generic routines for the analysis step, which only distinguish global and local filters, and the LEnKF. This page describes the implementation of the analysis step for global filters (ESTKF, ETKF, EnKF, NETF, PF). For the analysis step of the global filters we need different operations related to the observations. These operations are requested by PDAF by call-back routines supplied by the user and provided in the OMI structure. The names of the routines that are provided by the user are specified in the call to the routine `PDAFomi_assimilate_global` in the fully-parallel implementation (or `PDAFomi_put_state_global` for the 'flexible' implementation) that was discussed before. With regard to the parallelization, all these routines (except `U_collect_state`, `U_distribute_state`, and `U_next_observation`) are executed by the filter processes (`filterpe=.true.`) only. For completeness we discuss here all user-supplied routines that are specified in the interface to `PDAFomi_assimilate_global`. Thus, some of the user-supplied routines that are explained on the page describing the modification of the model code for the ensemble integration are repeated here. == `PDAFomi_assimilate_global` == The general aspects of the filter specific routines `PDAF_assimilate_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration] and its sub-page on [InsertAnalysisStep inserting the analysis step]. The routine is used in the fully-parallel implementation variant of the data assimilation system. When the 'flexible' implementation variant is used, the routines `PDAF_put_state_*` is used as described further below. Here, we list the full interface of the routine. Subsequently, the user-supplied routines specified in the call is explained. The interface for using the global filters is: {{{ SUBROUTINE PDAFomi_assimilate_global(U_collect_state, U_distribute_state, & U_init_dim_obs_pdafomi, U_obs_op_pdafomi, & U_prepoststep, U_next_observation, status) }}} with the following arguments: * [#U_collect_statecollect_state_pdaf.F90 U_collect_state]: The name of the user-supplied routine that initializes a state vector from the array holding the ensemble of model states from the model fields. This is basically the inverse operation to `U_distribute_state` used in `PDAF_get_state` as well as here. * [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]: The name of a user supplied routine that initializes the model fields from the array holding the ensemble of model state vectors. * [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]: The name of the user-supplied routine that initializes the observation information and provides the size of observation vector * [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi]: The name of the user-supplied routine that acts as the observation operator on some state vector * [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep]: The name of the pre/poststep routine as in `PDAF_get_state` * [#U_next_observationnext_observation.F90 U_next_observation]: The name of a user supplied routine that initializes the variables `nsteps`, `timenow`, and `doexit`. The same routine is also used in `PDAF_get_state`. * `status`: The integer status flag. It is zero, if `PDAFomi_assimilate_global` is exited without errors. == `PDAFomi_put_state_global` == When the 'flexible' implementation variant is chosen for the assimilation system, the routine `PDAFomi_put_state_global` has to be used instead of `PDAFomi_assimilate_global`. The general aspects of the filter specific routines `PDAF_put_state_*` have been described on the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration]. The interface of the routine is identical with that of `PDAF_assimilate_global` with the exception the specification of the user-supplied routines `U_distribute_state` and `U_next_observation` are missing. The interface when using one of the global filters is the following: {{{ SUBROUTINE PDAFomi_put_state_global(U_collect_state, & U_init_dim_obs_pdafomi, U_obs_op_pdafomi, & U_prepoststep, status) }}} == User-supplied routines == Here all user-supplied routines are described that are required in the call to `PDAFomi_assimilate_global`. For some of the generic routines, we link to the page on [ModifyModelforEnsembleIntegration modifying the model code for the ensemble integration]. To indicate user-supplied routines we use the prefix `U_`. In the template directory `templates/` as well as in the tutorial implementations in `tutorial/` these routines exist without the prefix, but with the extension `_pdaf.F90`. The user-routines relating to OMI are collected in the file `callback_obs_pdafomi.F90`. In the section titles below we provide the name of the template file in parentheses. In the subroutine interfaces some variables appear with the suffix `_p`. This suffix indicates that the variable is particular to a model sub-domain, if a domain decomposed model is used. Thus, the value(s) in the variable will be different for different model sub-domains. === `U_collect_state` (collect_state_pdaf.F90) === This routine is independent of the filter algorithm used. See the page on [InsertAnalysisStep#U_collect_statecollect_state_pdaf.F90 inserting the analysis step] for the description of this routine. === `U_distribute_state` (distribute_state_pdaf.F90) === This routine is independent of the filter algorithm used. See the page on [InsertAnalysisStep#U_distribute_statedistribute_state_pdaf.F90 inserting the analysis step] for the description of this routine. === `U_init_dim_obs_pdafomi` (callback_obs_pdafomi.F90) === This is a call-back routine for PDAF-OMI initializing the observation information. The routine just calls a routine from the observation module for each observation type. See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information. === `U_obs_op_pdafomi` (callback_obs_pdafomi.F90) === This is a call-back routine for PDAF-OMI applying the observation operator to the state vector. The routine calls a routine from the observation module for each observation type. See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information. === `U_prepoststep` (prepoststep_ens_pdaf.F90) === The routine has already been described for modifying the model for the ensemble integration and for inserting the analysis step. See the page on [InsertAnalysisStep#U_prepoststepprepoststep_ens_pdaf.F90 inserting the analysis step] for the description of this routine. === `U_next_observation` (next_observation_pdaf.F90) === This routine is independent of the filter algorithm used. See the page on [InsertAnalysisStep#U_next_observationnext_observation_pdaf.F90 inserting the analysis step] for the description of this routine. == Execution order of user-supplied routines == The user-supplied routines are essentially executed in the order they are listed in the interface to `PDAFomi_assimilate_global`. The order can be important as some routines can perform preparatory work for later routines. For example, `U_init_dim_obs_pdafomi` prepares an index array that provides the information for executing the observation operator in `U_obs_op_pdafomi`. How this information is initialized is described in the documentation of OMI. Before the analysis step is called the following routine is executed: 1. [#U_collect_statecollect_state_pdaf.F90 U_collect_state] The analysis step is executed when the ensemble integration of the forecast is completed. During the analysis step the following routines are executed in the given order: 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the forecast ensemble, called with negative value of the time step) 1. [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi] 1. [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi] (multiple calls, one for each ensemble member) 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the analysis ensemble, called with (positive) value of the time step) In case of the routine `PDAFomi_assimilate_global`, the following routines are executed after the analysis step: 1. [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state] 1. [#U_next_observationnext_observation_pdaf.F90 U_next_observation]