Changes between Version 1 and Version 2 of Implement3DVarAnalysisPDAF3_3DVar


Ignore:
Timestamp:
May 26, 2025, 5:46:05 PM (7 days ago)
Author:
lnerger
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • Implement3DVarAnalysisPDAF3_3DVar

    v1 v2  
    1 = Implementation of the Analysis Step of Hybrid 3D-Var =
     1= Implementation of the Analysis Step for parameterized 3D-Var =
    22
    33{{{
     
    2929}}}
    3030
    31 
    3231[[PageOutline(2-3,Contents of this page)]]
    3332
    3433== Overview ==
    3534
    36 This page describes the recommended implementation of the analysis step for the hybrid 3D-Var schemes using the PDAF3 interface of.
    37 
    38 || The interface for hybrid 3D-Var using the localized LESTKF for the transformation is the universal interface. If one intends to implement particularly for the variant using the global filter ESTKF, there is a separate interface for this special case. ||
    39 
    40 For the analysis step of 3D-Var we need different operations related to the observations. These operations are requested by PDAF by call-back routines supplied by the user and provided in the OMI structure. The names of the routines that are provided by the user are specified in the call to the assimilation routines. With regard to the parallelization, all these routines (except `collect_state_pdaf`, `distribute_state_pdaf`, and `next_observation_pdaf`) are executed by the filter processes (`filterpe=.true.`) only.
     35This page describes the recommended implementation of the analysis step for the parameterized 3D-Var using the particular interface routines.
     36
     37||
     38
     39There are genenerally three different variants of 3D-Var provided by PDAF: parameterized 3D-Var, 3D Ensemble Var, and hybrid (parameterized + ensemble) 3D-Var. All can be called using the universal interface routines described here.
     40
     41For the analysis step of 3D-Var we need different operations related to the observations. These operations are requested by PDAF by call-back routines supplied by the user and provided in the OMI structure. The names of the routines that are provided by the user are specified in the call to the routine `PDAF3_assimilate_3dvar_all` in the online mode of PDAF or `PDAF3_assim_offline_3dvar_all` for the offline mode. With regard to the parallelization, all these routines (except `collect_state_pdaf`, `distribute_state_pdaf`, and `next_observation_pdaf`) are executed by the filter processes (`filterpe=.true.`) only.
     42
     43The universal interface has more arguments than the specific interfaces for the parameterized 3D-Var or the 3D ensemble Var methods. It is useful if one implements both the 3D-Var with parameterized covariances and rhe 3D ensemble Var. The hybrid 3D-Var using the LESTKF is always called using this unversal interface.
    4144
    4245The different 3D-Var methods in PDAF were explained on the [wiki:Implement3DVarAnalysisOverview page providing the verview of the Analysis Step for 3D-Var Methods]. Depending the type of 3D-Var, the background covariance matrix '''B''' is represented either in a parameterized form, by an ensemble, or by a combination of both. The 3D-Var methods that use an ensemble need to transform the ensemble perturbations using an ensemble Kalman filter. PDAF uses for this the error-subspace transform filter ESTKF. There are two variants: The first uses the localized filter LESTKF, while the second uses the global filter ESTKF.
     
    4447For completeness we discuss here all user-supplied routines that are specified in the interface to `PDAFomi_assimilate_hyb3dvar_X`. Thus, some of the user-supplied routines that are explained on the page describing the modification of the model code for the ensemble integration are repeated here.
    4548
    46 
    47 == Analysis Routines ==
    48 
    49 The general aspects of the filter (or solver) specific routines `PDAF_assimilate_*` have been described on the page [OnlineModifyModelforEnsembleIntegration_PDAF3 Modification of the model code for the ensemble integration]. Here, we list the full interface of the routine. Subsequently, the user-supplied routines specified in the call is explained.
    50 
    51 There are two variants that either compute the transformataion of the ensemble transformation using the local LESTKF method, or the global ESTKF.
    52 
    53 === `PDAF3_assimilate_3dvar_all` ===
    54 
    55 This universal routine can be used for the hybrid 3D-Var in both variants, using the local LESTKF or the global ESTKF for the transformation of the ensemble perturbations.
    56 
    57 This routine is used both in the ''fully-parallel'' and the ''flexible'' implementation variants of the data assimilation system. (See the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration] for these variants)
    58 
    59 The interface is:
    60 {{{
    61 SUBROUTINE PDAF3_assimilate_3dvar_all(collect_state_pdaf, distribute_state_pdaf, &
     49== `PDAFomi_assimilate_3dvar` ==
     50
     51This routine is used both in the ''fully-parallel'' and the ''flexible'' implementation variants of the data assimilation system. (See the page [OnlineModifyModelforEnsembleIntegration_PDAF3 Modification of the model code for the ensemble integration] for these variants)
     52
     53The interface for using the parameterized 3D-Var is:
     54{{{
     55  SUBROUTINE PDAF3_assimilate_3dvar(collect_state_pdaf, distribute_state_pdaf, &
    6256                                 init_dim_obs_pdafomi, obs_op_pdafomi, &
    63                                  cvt_ens_pdaf, cvt_adj_ens_pdaf, cvt_pdaf, cvt_adj_pdaf, &
     57                                 cvt_pdaf, cvt_adj_pdaf, &
    6458                                 obs_op_lin_pdafomi, obs_op_adj_pdafomi, &
    65                                  init_n_domains_p_pdaf, init_dim_l_pdaf, init_dim_obs_l_pdafomi, &
    6659                                 prepoststep_pdaf, next_observation_pdaf, outflag)
    6760}}}
     
    7164 * [#init_dim_obs_pdafomicallback_obs_pdafomi.F90 init_dim_obs_pdafomi]: The name of the user-supplied routine that initializes the observation information and provides the size of observation vector
    7265 * [#obs_op_pdafomicallback_obs_pdafomi.F90 obs_op_pdafomi]: The name of the user-supplied routine that acts as the observation operator on some state vector
    73  * [#cvt_ens_pdafcvt_ens_pdaf.F90 cvt_ens_pdaf]: The name of the user-supplied routine that applies the ensemble control-vector transformation (square-root of the B-matrix) on some control vector to obtain a state vector.
    74  * [#cvt_adj_ens_pdafcvt_adj_ens_pdaf.F90 cvt_adj_ens_pdaf]: The name of the user-supplied routine that applies the adjoint ensemble control-vector transformation (with square-root of the B-matrix) on some state vector to obtain the control vector.
    7566 * [#cvt_pdafcvt_pdaf.F90 cvt_pdaf]: The name of the user-supplied routine that applies the control-vector transformation (square-root of the B-matrix) on some control vector to obtain a state vector.
    7667 * [#cvt_adj_pdafcvt_adj_pdaf.F90 cvt_adj_pdaf]: The name of the user-supplied routine that applies the adjoint control-vector transformation (with square-root of the B-matrix) on some state vector to obtain the control vector.
    7768 * [#obs_op_pdafomicallback_obs_pdafomi.F90 obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the linearized observation operator on some state vector
    7869 * [#obs_op_pdafomicallback_obs_pdafomi.F90 obs_op_lin_pdafomi]: The name of the user-supplied routine that acts as the adjoint observation operator on some state vector
    79  * [#init_n_domains_pdafinit_n_domains_pdaf.F90 init_n_domains_pdaf]: The name of the routine that provides the number of local analysis domains
    80  * [#init_dim_l_pdafinit_dim_l_pdaf.F90 init_dim_l_pdaf]: The name of the routine that provides the state dimension for a local analysis domain
    81  * [#init_dim_obs_l_pdafomicallback_obs_pdafomi.F90 init_dim_obs_l_pdafomi]: The name of the routine that initializes the size of the observation vector for a local analysis domain
    8270 * [#prepoststep_pdafprepoststep_ens_pdaf.F90 prepoststep_pdaf]: The name of the pre/poststep routine as in `PDAF_init_forecast`
    8371 * [#next_observation_pdafnext_observation.F90 next_observation_pdaf]: The name of a user supplied routine that initializes the variables `nsteps`, `timenow`, and `doexit`. The same routine is also used in `PDAF_init_forecast`.
    8472 * `status`: The integer status flag. It is zero, if the routine is exited without errors.
    8573
    86 === `PDAF3_assim_offline_3dvar_all` ===
    87 
    88 For the offline mode of PDAF, the routine `PDAF3_assim_offline_3dvar_all` is used to perform the analysis step.
    89 The interface of the routine is identical with that of `PDAF3_assimilate_3dvar_all`, except that the user-supplied routines `U_distribute_state`, `U_collect_state` and `U_next_observation` are missing.
    90 
    91 The interface when using one of the global filters is the following:
    92 {{{
    93   SUBROUTINE PDAF3_assim_offline_3dvar_all(&
    94                                  U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
    95                                  U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, &
    96                                  U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, &
    97                                  U_init_n_domains_p, U_init_dim_l, U_init_dim_obs_l_pdafomi, &
    98                                  U_prepoststep, outflag)
    99 }}}
    100 
    101 === `PDAF3_put_state_3dvar_all` ===
    102 
    103 This routine exists for backward-compatibility. In implementations that were done before the release of PDAF V3.0, a 'put_state' routine was used for the `flexible` parallelization variant and for the offline mode.
    104 When the 'flexible' implementation variant is chosen for the assimilation system, the routine. The routine `PDAF3_put_state_3dvar_all` allows to port such implemnetations to the PDAF3 interface with minimal changes.
    105 The interface of the routine is identical with that of `PDAF3_assimilate_3dvar_all`, except that the user-supplied routines `U_distribute_state` and `U_next_observation` are missing.
    106 
    107 The interface when using one of the global filters is the following:
    108 {{{
    109   SUBROUTINE PDAF3_put_state_3dvar_all(U_collect_state, &
    110                                  U_init_dim_obs_pdafomi, U_obs_op_pdafomi, &
    111                                  U_cvt_ens, U_cvt_adj_ens, U_cvt, U_cvt_adj, &
    112                                  U_obs_op_lin_pdafomi, U_obs_op_adj_pdafomi, &
    113                                  U_init_n_domains_p, U_init_dim_l, U_init_dim_obs_l_pdafomi, &
    114                                  U_prepoststep, outflag)
    115 }}}
    116 
    117 
    118 == Analysis Routines specific for using global ESTKF ==
    119 
    120 === `PDAF3_assimilate_hyb3dvar_estkf` ===
    121 
    122 This routine is particular for the ESTKF. One can use it if one exclusively uses the global filter. In the argument list of this routine, the call-back routine for localization are not present and hence the argument list is shorter than that of `PDAF3_assimilate_3dvar_all`.
    123  
    124 This routine is used both in the ''fully-parallel'' and the ''flexible'' implementation variants of the data assimilation system. (See the page [ModifyModelforEnsembleIntegration Modification of the model code for the ensemble integration] for these variants)
     74
     75== `PDAF3_assim_offline_3dvar` ==
     76
     77This routine is used to perform the analysi step for the offline mode of PDAF.
     78The interface of the routine is identical with that of `PDAF3_assimilate_3dvar`, except that the user-supplied routines `U_distribute_state`, `U_collect_state` and `U_next_observation` are missing.
    12579
    12680The interface is:
    12781{{{
    128 SUBROUTINE PDAF3_assimilate_hyb3dvar_estkf(collect_state_pdaf, distribute_state_pdaf, &
     82  SUBROUTINE PDAF3_assim_offline_3dvar( &
    12983                                 init_dim_obs_pdafomi, obs_op_pdafomi, &
    130                                  cvt_ens_pdaf, cvt_adj_ens_pdaf, cvt_pdaf, cvt_adj_pdaf, &
     84                                 cvt_pdaf, cvt_adj_pdaf, &
    13185                                 obs_op_lin_pdafomi, obs_op_adj_pdafomi, &
    13286                                 prepoststep_pdaf, next_observation_pdaf, outflag)
    13387}}}
    134 where all arguments, except the last one, are the names of call-back routines. See the description of the arguments for `PDAF3_assimilate_3dvar_all`.
    135 
    136 
    137 
    138 === `PDAF3_assim_offline_hyb3dvar_estkf` ===
    139 
    140 This routine is particular for the ESTKF. One can use it if one exclusively uses the global filter. In the argument list of this routine, the call-back routine for localization are not present and hence the argument list is shorter than that of `PDAF3_assim_offline_3dvar_all`.
    141 
    142 This routine is used to perform the analysis step for the offline mode.
    143 The interface of the routine is identical with that of `PDAF3_assimilate_hyb3dvar_estkf`, except that the user-supplied routines `U_distribute_state`, `U_collect_state` and `U_next_observation` are missing.
     88
     89
     90== `PDAF3_put_state_3dvar` ==
     91
     92This routine exists for backward-compatibility. In implementations that were done before the release of PDAF V3.0, a 'put_state' routine was used for the `flexible` parallelization variant and for the offline mode.
     93When the 'flexible' implementation variant is chosen for the assimilation system, the routine. This routine allows to port such implementations to the PDAF3 interface with minimal changes.
     94The interface of the routine is identical with that of `PDAF3_assimilate_3dvar`, except that the user-supplied routines `U_distribute_state` and `U_next_observation` are missing.
    14495
    14596The interface is:
    146 {{{
    147 SUBROUTINE PDAF3_assimilate_hyb3dvar_estkf(&
     97
     98{{{
     99  SUBROUTINE PDAF3_put_state_3dvar(collect_state_pdaf, &
    148100                                 init_dim_obs_pdafomi, obs_op_pdafomi, &
    149                                  cvt_ens_pdaf, cvt_adj_ens_pdaf, cvt_pdaf, cvt_adj_pdaf, &
     101                                 cvt_pdaf, cvt_adj_pdaf, &
    150102                                 obs_op_lin_pdafomi, obs_op_adj_pdafomi, &
    151                                  prepoststep_pdaf, outflag)
    152 }}}
    153 where all arguments, except the last one, are the names of call-back routines. See the description of the arguments for `PDAF3_assimilate_3dvar_all`.
    154 
    155 
    156 
    157 === `PDAF3_put_state_hyb3dvar_estkf` ===
    158 
    159 This routine exists for backward-compatibility. In implementations that were done before the release of PDAF V3.0, a 'put_state' routine was used for the `flexible` parallelization variant and for the offline mode.
    160 When the 'flexible' implementation variant is chosen for the assimilation system, the routine. The routine `PDAF3_put_state_hyb3dvar_estkf` allows to port such implemnetations to the PDAF3 interface with minimal changes.
    161 The interface of the routine is identical with that of `PDAF3_assimilate_hyb3dvar_estkf`, except that the user-supplied routines `U_distribute_state` and `U_next_observation` are missing.
    162 
    163 This routine is particular for the ESTKF. One can use it if one exclusively uses the global filter. In the argument list of this routine, the call-back routine for localization are not present and hence the argument list is shorter than that of `PDAF3_put_state_3dvar_all`.
    164 
    165 The interface is:
    166 {{{
    167 SUBROUTINE PDAF3_assimilate_hyb3dvar_estkf(collect_state_pdaf, &
    168                                  init_dim_obs_pdafomi, obs_op_pdafomi, &
    169                                  cvt_ens_pdaf, cvt_adj_ens_pdaf, cvt_pdaf, cvt_adj_pdaf, &
    170                                  obs_op_lin_pdafomi, obs_op_adj_pdafomi, &
    171                                  prepoststep_pdaf, outflag)
    172 }}}
    173 where all arguments, except the last one, are the names of call-back routines. See the description of the arguments for `PDAF3_assimilate_3dvar_all`.
    174 
    175 
    176 
     103                                 prepoststep_pdaf, next_observation_pdaf, outflag)
     104}}}
    177105
    178106== User-supplied routines ==
    179107
    180 Here all user-supplied routines are described that are required in the call to the assimilation routines for hybrid 3D-Var. For some of the generic routines, we link to the page on [wiki:OnlineModifyModelforEnsembleIntegration_PDAF3 modifying the model code for the ensemble integration].
     108Here all user-supplied routines are described that are required in the call to `PDAFomi_assimilate_3dvar`. For some of the generic routines, we link to the page on [ModifyModelforEnsembleIntegration modifying the model code for the ensemble integration].
    181109
    182110To indicate user-supplied routines we use the prefix `U_`. In the template directory `templates/` as well as in the tutorial implementations in `tutorial/` these routines exist without the prefix, but with the extension `_pdaf.F90`. The user-routines relating to OMI are collected in the file `callback_obs_pdafomi.F90`. In the section titles below we provide the name of the template file in parentheses.
     
    185113
    186114
    187 === `collect_state_pdaf` (collect_state_pdaf.F90) ===
     115=== `U_collect_state` (collect_state_pdaf.F90) ===
    188116
    189117This routine is independent of the filter algorithm used.
    190118
    191 See the page on [ModifyModelforEnsembleIntegration#collect_state_pdafcollect_state_pdaf.F90 modifying the model code for the ensemble integration] for the description of this routine.
    192 
    193 === `distribute_state_pdaf` (distribute_state_pdaf.F90) ===
     119See the page on [InsertAnalysisStep#U_collect_statecollect_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     120
     121
     122=== `U_distribute_state` (distribute_state_pdaf.F90) ===
    194123
    195124This routine is independent of the filter algorithm used.
    196125
    197 See the page on [ModifyModelforEnsembleIntegration#distribute_state_pdafdistribute_state_pdaf.F90 modifying the model code for the ensemble integration] for the description of this routine.
    198 
    199 
    200 
    201 === `init_dim_obs_pdafomi` (callback_obs_pdafomi.F90) ===
    202 
    203 This is a call-back routine initializing the observation information. The routine just calls a routine from the observation module for each observation type.
    204 
    205 See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
    206 
    207 
    208 
    209 === `obs_op_pdafomi` (callback_obs_pdafomi.F90) ===
    210 
    211 This is a call-back routine applying the observation operator to the state vector. The routine calls a routine from the observation module for each observation type.
    212 
    213 See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
    214 
    215 
    216 
    217 === `cvt_ens_pdaf` (cvt_ens_pdaf.F90) ===
    218 
    219 The interface for this routine is:
    220 {{{
    221 SUBROUTINE cvt_ens_pdaf(iter, dim_p, dim_ens, dim_cv_ens_p, ens_p, cv_p, Vcv_p)
    222 
    223   INTEGER, INTENT(in) :: iter               ! Iteration of optimization
    224   INTEGER, INTENT(in) :: dim_p              ! PE-local observation dimension
    225   INTEGER, INTENT(in) :: dim_ens            ! Ensemble size
    226   INTEGER, INTENT(in) :: dim_cv_ens_p       ! Dimension of control vector
    227   REAL, INTENT(in) :: ens_p(dim_p, dim_ens) ! PE-local ensemble
    228   REAL, INTENT(in) :: cv_p(dim_cv_ens_p)    ! PE-local control vector
    229   REAL, INTENT(inout) :: Vcv_p(dim_p)       ! PE-local state increment
    230 }}}
    231 
    232 The routine is called during the analysis step during the iterative minimization of the cost function.
    233 It has to apply the control vector transformation to the control vector and return the transformed result vector. Usually this transformation is the multiplication with the square-root of the background error covariance matrix '''B'''. For the 3D Ensemble Var, this square root is usually expressed through the ensemble.
    234 
    235 If the control vector is decomposed in case of parallelization it first needs to the gathered on each processor and afterwards the transformation is computed on the potentially domain-decomposed state vector.
    236 
    237 
    238 === `cvt_adj_pdaf` (cvt_adj_pdaf.F90) ===
    239 
    240 The interface for this routine is:
    241 {{{
    242 SUBROUTINE cvt_adj_ens_pdaf(iter, dim_p, dim_ens, dim_cv_ens_p, ens_p, Vcv_p, cv_p)
    243 
    244   INTEGER, INTENT(in) :: iter                ! Iteration of optimization
    245   INTEGER, INTENT(in) :: dim_p               ! PE-local observation dimension
    246   INTEGER, INTENT(in) :: dim_ens             ! Ensemble size
    247   INTEGER, INTENT(in) :: dim_cv_ens_p        ! PE-local dimension of control vector
    248   REAL, INTENT(in) :: ens_p(dim_p, dim_ens)  ! PE-local ensemble
    249   REAL, INTENT(in)    :: Vcv_p(dim_p)        ! PE-local input vector
    250   REAL, INTENT(inout) :: cv_p(dim_cv_ens_p)  ! PE-local result vector
    251 }}}
    252 
    253 The routine is called during the analysis step during the iterative minimization of the cost function.
    254 It has to apply the adjoint control vector transformation to a state vector and return the control vector. Usually this transformation is the multiplication with transpose of the square-root of the background error covariance matrix '''B'''. or the 3D Ensemble Var, this square root is usually expressed through the ensemble.
    255 
    256 If the state vector is decomposed in case of parallelization one needs to take care that the application of the trasformation is complete. This usually requries a comminucation with MPI_Allreduce to obtain a global sun.
    257 
    258 
    259 
    260 === `cvt_pdaf` (cvt_pdaf.F90) ===
     126See the page on [InsertAnalysisStep#U_distribute_statedistribute_state_pdaf.F90 inserting the analysis step] for the description of this routine.
     127
     128
     129=== `U_init_dim_obs_pdafomi` (callback_obs_pdafomi.F90) ===
     130
     131This is a call-back routine for PDAF-OMI initializing the observation information. The routine just calls a routine from the observation module for each observation type.
     132
     133See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     134
     135
     136
     137=== `U_obs_op_pdafomi` (callback_obs_pdafomi.F90) ===
     138
     139This is a call-back routine for PDAF-OMI applying the observation operator to the state vector. The routine calls a routine from the observation module for each observation type.
     140
     141See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
     142
     143
     144
     145
     146=== `U_cvt` (cvt_pdaf.F90) ===
    261147
    262148The interface for this routine is:
     
    277163
    278164
    279 === `cvt_adj_pdaf` (cvt_adj_pdaf.F90) ===
     165=== `U_cvt_adj` (cvt_adj_pdaf.F90) ===
    280166
    281167The interface for this routine is:
     
    297183
    298184
    299 
    300 === `obs_op_lin_pdafomi` (callback_obs_pdafomi.F90) ===
     185=== `U_obs_op_lin_pdafomi` (callback_obs_pdafomi.F90) ===
    301186
    302187This is a call-back routine for PDAF-OMI applying the linearized observation operator to the state vector. The routine calls a routine from the observation module for each observation type. If the full observation operator is lineaer the same operator can be used here.
     
    305190
    306191
    307 === `obs_op_adj_pdafomi` (callback_obs_pdafomi.F90) ===
     192=== `U_obs_op_adj_pdafomi` (callback_obs_pdafomi.F90) ===
    308193
    309194This is a call-back routine for PDAF-OMI applying the adjoint observation operator to some vector inthe observation space. The routine calls a routine from the observation module for each observation type.
     
    312197
    313198
    314 
    315 === `init_n_domains_pdaf` (init_n_domains_pdaf.F90) ===
    316 
    317 This routine is only used for localization. It is called during the analysis step before the loop over the local analysis domains is entered. It has to provide the number of local analysis domains. In case of a domain-decomposed model, the number of local analysis domain for the model sub-domain of the calling process has to be initialized.
    318 
    319 The interface for this routine is:
    320 {{{
    321 SUBROUTINE init_n_domains_pdaf(step, n_domains_p)
    322 
    323   INTEGER, INTENT(in)  :: step        ! Current time step
    324   INTEGER, INTENT(out) :: n_domains_p ! Number of analysis domains for local model sub-domain
    325 }}}
    326 
    327 Hints:
    328  * As a simple case, if the localization is only performed horizontally, the local analysis domains can be single vertical columns of the model grid. In this case, `n_domains_p` is simply the number of vertical columns in the process-local model sub-domain.
    329 
    330 
    331 === `init_dim_l_pdaf` (init_dim_l_pdaf.F90) ===
    332 
    333 This routine is only used for localization.
    334 
    335 The interface for this routine is:
    336 {{{
    337 SUBROUTINE init_dim_l_pdaf(step, domain_p, dim_l)
    338 
    339   INTEGER, INTENT(in)  :: step        ! Current time step
    340   INTEGER, INTENT(in)  :: domain_p    ! Current local analysis domain
    341   INTEGER, INTENT(out) :: dim_l       ! Local state dimension
    342 }}}
    343 
    344 The routine is called during the loop over the local analysis domains in the analysis step.
    345 
    346 It provides in `dim_l` the dimension of the state vector for the local analysis domain with index `domain_p` to PDAF.
    347 
    348 In the recommended implementation shown in the tutorial and template codes, there are two further initializations:
    349 1. The routine has initialize the index array `id_lstate_in_pstate` containing the indices of the elements of the local state vector in the global (or domain-decomposed) state vector. Then it has to provide this array to PDAF by calling `PDAFlocal_set_indices` (see below).
    350 2. The routine initializes an array `coords_l` containing the coordinates of the local analysis domain. This is shared with `U_init_dim_obs_l_pdafomi` via the module `mod_assimilation`.
    351 
    352 Hints:
    353   * The coordinates in `coords_l` have to describe one location in space that is used for localization to compute the distance from observations.
    354   * The coordinates in `coords_l` have the same units as those used for the observations
    355   * For geographic distance computations, the unit of the coordinates needs to be radian, thus (0, 2*pi) or (-pi,pi) for longitude and (-pi/2, pi/2) for latitude.
    356  * Any form of local domain is possible as long as it can be describe as a single location.
    357   * If the local domain is a single grid point, `dim_l` will be the number of model variables at this grid point.
    358   * The local analysis domain can also be a single vertical column of the model grid if observations are only horizontally distributed (a common situation with satellite data in the ocean).
    359    * In this case, `dim_l` will be the number of vertical grid points at this location times the number of model fields that exist in the vertical, plus possible variables at e.g. the surface.
    360    * In this case only the horizontal coordinates are used in `coords_l`.
    361 
    362 The index array `id_lstate_in_pstate` is an integer array in form of a one-dimensional vector. One initializes this vector by determining the indices of the elements of the local state vector in the global, or domain decomposed, state vector. After initializing `id_lstate_in_pstate`, one has to provided it to PDAF by calling `PDAFlocal_set_indices'. The interface interface is:
    363 
    364 {{{
    365 SUBROUTINE PDAFlocal_set_indices(dim_l, id_lstate_in_pstate)
    366 
    367   INTEGER, INTENT(in) :: dim_l                          ! Dimension of local state vector
    368   INTEGER, INTENT(in) :: id_lstate_in_pstate(dim_l)     ! Index array for mapping
    369 }}}
    370 
    371 Hint for `id_lstate_in_pstate`:
    372  * The initialization of the index vector `id_lstate_to_pstate` is analogous to a loop that directly performs the initialization of a local state vector. However, here only the indices are stored.
    373  * See the [wiki:PDAFlocal_overview PDAFlocal overview page] for more information on the functionality of PDAFlocal.
    374 
    375 
    376 === `init_dim_obs_l_pdafomi` (callback_obs_pdafomi.F90) ===
    377 
    378 This routine is only used for localization. It is a call-back routine for PDAF-OMI that initializes the local observation vector. The routine calls a routine from the observation module for each observation type.
    379 
    380 See the [wiki:OMI_Callback_obs_pdafomi documentation on callback_obs_pdafomi.F90] for more information.
    381 
    382 
    383 === `prepoststep_pdaf` (prepoststep_ens_pdaf.F90) ===
     199=== `U_prepoststep` (prepoststep_ens_pdaf.F90) ===
    384200
    385201The routine has already been described for modifying the model for the ensemble integration and for inserting the analysis step.
    386202
    387 See the page on [ModifyModelforEnsembleIntegration#distribute_state_pdafdistribute_state_pdaf.F90 modifying the model code for the ensemble integration] for the description of this routine.
    388 
    389 
    390 === `next_observation_pdaf` (next_observation_pdaf.F90) ===
     203See the page on [InsertAnalysisStep#U_prepoststepprepoststep_ens_pdaf.F90 inserting the analysis step] for the description of this routine.
     204
     205
     206=== `U_next_observation` (next_observation_pdaf.F90) ===
    391207
    392208This routine is independent of the filter algorithm used.
    393209
    394 See the page on [ModifyModelforEnsembleIntegration#distribute_state_pdafdistribute_state_pdaf.F90 modifying the model code for the ensemble integration] for the description of this routine.
     210See the page on [InsertAnalysisStep#U_next_observationnext_observation_pdaf.F90 inserting the analysis step] for the description of this routine.
     211
    395212
    396213== Execution order of user-supplied routines ==
    397214
    398 The user-supplied routines are executed in the order listed below.  The order can be important as some routines can perform preparatory work for later routines. For example, `init_dim_obs_pdafomi` prepares an index array that provides the information for executing the observation operator in `obs_op_pdafomi`. How this information is initialized is described in the documentation of OMI.
     215The user-supplied routines are essentially executed in the order they are listed in the interface to `PDAFomi_assimilate_3dvar`. The order can be important as some routines can perform preparatory work for later routines. For example, `U_init_dim_obs_pdafomi` prepares an index array that provides the information for executing the observation operator in `U_obs_op_pdafomi`. How this information is initialized is described in the documentation of OMI.
    399216
    400217Before the analysis step is called the following routine is executed:
    401  1. [#collect_state_pdafcollect_state_pdaf.F90 collect_state_pdaf]
     218 1. [#U_collect_statecollect_state_pdaf.F90 U_collect_state]
    402219
    403220The analysis step is executed when the ensemble integration of the forecast is completed. During the analysis step the following routines are executed in the given order:
    404  1. [#prepoststep_pdafprepoststep_ens_pdaf.F90 prepoststep_pdaf] (Call to act on the forecast ensemble, called with negative value of the time step)
    405  1. [#init_dim_obs_pdafomicallback_obs_pdafomi.F90 init_dim_obs_pdafomi]
    406  1. [#obs_op_pdafomicallback_obs_pdafomi.F90 obs_op_pdafomi] (multiple calls, one for each ensemble member)
     221 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the forecast ensemble, called with negative value of the time step)
     222 1. [#U_init_dim_obs_pdafomicallback_obs_pdafomi.F90 U_init_dim_obs_pdafomi]
     223 1. [#U_obs_op_pdafomicallback_obs_pdafomi.F90 U_obs_op_pdafomi] (multiple calls, one for each ensemble member)
    407224
    408225Inside the analysis step the interative optimization is computed. This involves the repeated call of the routines:
    409  1. [#cvt_pdafcvt_pdaf.F90 cvt_pdaf]
    410  1. [#cvt_ens_pdafcvt_ens_pdaf.F90 cvt_ens_pdaf]
    411  1. [#obs_op_lin_pdafomicallback_obs_pdafomi.F90 obs_op_lin_pdafomi]
    412  1. [#obs_op_adj_pdafomicallback_obs_pdafomi.F90 obs_op_adj_pdafomi]
    413  1. [#cvt_adj_pdafcvt_adj_pdaf.F90 cvt_adj_pdaf]
    414  1. [#cvt_adj_ens_pdafcvt_adj_ens_pdaf.F90 cvt_adj_ens_pdaf]
     226 1. [#U_cvtcvt_pdaf.F90 U_cvt]
     227 1. [#U_obs_op_linpdafomicallback_obs_pdafomi.F90 U_obs_op_lin_pdafomi]
     228 1. [#U_obs_op_adjpdafomicallback_obs_pdafomi.F90 U_obs_op_adj_pdafomi]
     229 1. [#U_cvt_adjcvt_adj_pdaf.F90 U_cvt_adj]
    415230
    416231After the iterative optimization the following routines are executes to complte the analysis step:
    417  1. [#cvt_ens_pdafcvt_pdaf.F90 cvt_pdaf] (Call to the parameterized part of the control vector transform to compute the final state vector increment)
    418  1. [#cvt_ens_pdafcvt_ens_pdaf.F90 cvt_ens_pdaf] (Call to the eensemble-part of the control vector transform to compute the final state vector increment)
    419  1. [#prepoststep_pdafprepoststep_ens_pdaf.F90 prepoststep_pdaf] (Call to act on the analysis ensemble, called with (positive) value of the time step)
    420 
    421 The iterative optimization abovve computes an updated ensemble mean state. Subsequently, the ensemble perturbations are updated using the LESTKF or ESTKF. The execution of the routines for these filters is described on the [wiki:ImplementAnalysisPDAF3Universal page on implementing the local filter analysis step] .
    422 
    423 In case of the routine `PDAF3_assimilate_3dvar_all`, the following routines are executed after the analysis step:
    424  1. [#distribute_state_pdafdistribute_state_pdaf.F90 distribute_state_pdaf]
    425  1. [#next_observation_pdafnext_observation_pdaf.F90 next_observation_pdaf]
     232 1. [#U_cvtcvt_pdaf.F90 U_cvt] (Call to the control vector transform to compute the final state vector increment
     233 1. [#U_prepoststepprepoststep_ens_pdaf.F90 U_prepoststep] (Call to act on the analysis ensemble, called with (positive) value of the time step)
     234
     235In case of the routine `PDAFomi_assimilate_3dvar`, the following routines are executed after the analysis step:
     236 1. [#U_distribute_statedistribute_state_pdaf.F90 U_distribute_state]
     237 1. [#U_next_observationnext_observation_pdaf.F90 U_next_observation]