| 6 | | There are different operations for each of the filter algorithms that need to be specified in the call to `pdaf_init`. To display the available options in a compiled assimilation program, one can use run with the specification `subtype=-1`. In this case `pdaf_init` wil display the available options for the selected filter algorithm and exit with an error status of -1. |
| 7 | | |
| 8 | | Below we list the options as they are displayed using `subtype=-1`. |
| 9 | | |
| 10 | | |
| 11 | | == SEIK (filtertype=1) == |
| | 6 | || This page documents the options for PDAF 3. [[BR]]See the [wiki:AvailableOptionsforInitPDAFuntilPDAF231 page on available options in PDAF 2.3.1] for the options valid for the ealier releases. || |
| | 7 | |
| | 8 | There are different options for each of the filter algorithms that need to be specified in the call to `PDAF_init` or that canbe set using `PDAF_set_iparam` and `PDAF_set_rparam`. To display the available options in a compiled assimilation program, one can use run with the specification `subtype=-1`. In this case `PDAF_init` wil display the available options for the selected filter algorithm and exit with an error status of -1. |
| | 9 | |
| | 10 | The options are mainly unified over the different DA methods. Here, the nonlinear ensemble methods have somewhaat different options from those for the ensemble Kalman filter variants. Also the 3D-Var methods have a different set of options. |
| | 11 | |
| | 12 | == Overview of options == |
| | 13 | |
| | 14 | === Options for ensemble Kalman filters === |
| | 15 | |
| | 16 | Overview of integer options for ensemble Kalman filters. The parameters are explained in the list of options as they are displayed using `subtype=-1`, which are shown further below. |
| | 17 | |
| | 18 | Parameters shown in italic font have changed in PDAF V3 compared to PDAF V2.3.1. The index position in PDAF V2.3.1 is shown in parenthesis. |
| | 19 | |
| | 20 | ||= iparam =||= SEIK =||= LSEIK =||= EnKF =||= LEnKF =||= ETKF =||= LETKF =||= ESTKF =||= LESTKF =||= //ENSRF// =|| |
| | 21 | ||= 1 =|| dim_p || dim_p || dim_p || dim_p || dim_p || dim_p || dim_p ||dim_p || dim_p |
| | 22 | ||= 2 =|| dim_ens || dim_ens || dim_ens || dim_ens || dim_ens || dim_ens || dim_ens || dim_ens || dim_ens || |
| | 23 | ||= 3 =|| || || //dim_lag(5)// || || dim_lag || dim_lag || dim_lag || dim_lag || || |
| | 24 | ||= 4 =|| || || //rank_ana(3)// || //rank_ana(3)// || || || || || || |
| | 25 | ||= 5 =|| type_forget || type_forget || || || type_forget || type_forget || type_forget || type_forget || || |
| | 26 | ||= 6 =|| type_trans || type_trans || || || type_trans || type_trans || type_trans || type_trans || || |
| | 27 | ||= 7 =|| type_sqrt || type_sqrt || || || || || type_sqrt || type_sqrt || || |
| | 28 | ||= 8 =|| obs_ens || obs_ens || obs_ens || obs_ens || obs_ens || obs_ens || obs_ens || obs_ens || obs_ens || |
| | 29 | ||= 9 =|| type_obs || type_obs || type_obs || type_obs || type_obs || type_obs || type_obs || type_obs || type_obs || |
| | 30 | |
| | 31 | Overview of real-valued options for ensemble Kalman filters. The parameters are explained in the list of options as they are displayed using `subtype=-1`, which are shown further below |
| | 32 | |
| | 33 | ||= rparam =||= SEIK =||= LSEIK =||= EnKF =||= LEnKF =||= ETKF =||= LETKF =||= ESTKF =||= LESTKF =||= //ENSRF// =|| |
| | 34 | ||= 1 =|| forget ||forget || forget || forget || forget || forget || forget || forget || forget || |
| | 35 | |
| | 36 | |
| | 37 | |
| | 38 | === Options for nonlinear DA methods === |
| | 39 | |
| | 40 | Overview of integer options for nonlinear DA methods. The parameters are explained in the list of options as they are displayed using `subtype=-1`, which are shown further below. |
| | 41 | |
| | 42 | Parameters shown in italic font have changed in PDAF V3 compared to PDAF V2.3.1. The index position in PDAF V2.3.1 is shown in parenthesis. |
| | 43 | |
| | 44 | ||= iparam =||= NETF =||= LNETF =||= LKNETF =||= PF =|| |
| | 45 | ||= 1 =|| dim_p || dim_p || dim_p || dim_p || |
| | 46 | ||= 2 =|| dim_ens || dim_ens || dim_ens || dim_ens || |
| | 47 | ||= 3 =|| dim_lag || dim_lag || || |
| | 48 | ||= 4 =|| type_noise || type_noise || //type_hyb(7)// || type_noise |
| | 49 | ||= 5 =|| type_forget || type_forget || type_forget || || |
| | 50 | ||= 6 =|| type_trans || type_trans || type_trans || //type_resample(3)// || |
| | 51 | ||= 7 =|| type_winf || type_winf || || //type_winf(6)// || |
| | 52 | ||= 8 =|| obs_ens || obs_ens || obs_ens || obs_ens || |
| | 53 | ||= 9 =|| type_obs || type_obs || type_obs || type_obs || |
| | 54 | |
| | 55 | |
| | 56 | Overview of real-valued options: |
| | 57 | |
| | 58 | ||= rparam =||= NETF =||= LNETF =||= LKNETF =||= PF =|| |
| | 59 | ||= 1 =|| forget ||forget || forget || //forget(2)// || |
| | 60 | ||= 2 =|| limit_winf || limit_winf || hyb_g || //limit_winf(3)// || |
| | 61 | ||= 3 =|| noise_amp || noise_amp || hyb_k || //noise_amp(1)// || |
| | 62 | |
| | 63 | |
| | 64 | === Options for 3D-Var methods === |
| | 65 | |
| | 66 | Overview of integer options for 3D-Var methods. The parameters are explained in the list of options as they are displayed using `subtype=-1`, which are shown further below. |
| | 67 | |
| | 68 | Parameters shown in italic font have changed in PDAF V3 compared to PDAF V2.3.1. The index position in PDAF V2.3.1 is shown in parenthesis. |
| | 69 | |
| | 70 | ||= iparam =||= 3dvar =||= en3dvar =||= hyb3dvar =|| |
| | 71 | ||= 1 =|| dim_p || dim_p || dim_p || |
| | 72 | ||= 2 =|| dim_ens || dim_ens || dim_ens || |
| | 73 | ||= 3 =|| type_opt || type_opt || type_opt || |
| | 74 | ||= 4 =|| dim_cvec || || dim_cvec || |
| | 75 | ||= 5 =|| || dim_cvec_ens || dim_cvec_ens || |
| | 76 | ||= 6 =|| solver param1 || solver param1 || solver param1 || |
| | 77 | ||= 7 =|| solver param2 || solver param2 || solver param2 || |
| | 78 | ||= 8 =|| obs_ens || obs_ens || obs_ens || |
| | 79 | ||= 9 =|| type_obs || type_obs || type_obs || |
| | 80 | ||= 10 =|| || || || |
| | 81 | ||= 11 =|| || type_forget || type_forget || |
| | 82 | ||= 12 =|| || type_trans || type_trans || |
| | 83 | ||= 13 =|| || type_sqrt || type_sqrt || |
| | 84 | |
| | 85 | Overview of real-valued options: |
| | 86 | ||= rparam =||= 3dvar =||= en3dvar =||= hyb3dvar =|| |
| | 87 | ||= 1 =|| forget || forget || forget || |
| | 88 | ||= 2 =|| || || beta || |
| | 89 | ||= 3 =|| solver param3 || solver param3 || solver param3 || |
| | 90 | ||= 4 =|| solver param4 || solver param4 || solver param4 || |
| | 91 | |
| | 92 | In the overview 'solver param1' to 'solver param4' denote different integer and real-valued parameters that control the different solvers used in the 3D-Var methods. |
| | 93 | |
| | 94 | |
| | 95 | == Local Ensemble Kalman Filters == |
| | 96 | |
| | 97 | === LESTKF (filtertype=PDAF_DA_LESTKF=7) === |
| | 98 | |
| | 99 | {{{ |
| | 100 | PDAF Available options for LESTKF: |
| | 101 | PDAF --- Sub-types (Parameter subtype) --- |
| | 102 | PDAF 0: Standard implementation with ensemble integration |
| | 103 | PDAF 10: Fixed error space basis |
| | 104 | PDAF 11: Fixed state covariance matrix |
| | 105 | PDAF --- Integer parameters (Array param_int) --- |
| | 106 | PDAF param_int(1): dim_p |
| | 107 | PDAF Dimension of state vector (>0), required |
| | 108 | PDAF param_int(2): dim_ens |
| | 109 | PDAF Ensemble size (>0), required |
| | 110 | PDAF param_int(3): dim_lag |
| | 111 | PDAF Size of smoothing lag (>=0), optional |
| | 112 | PDAF 0: no smoothing (default) |
| | 113 | PDAF >0: apply smoother up to specified lag |
| | 114 | PDAF param_int(4): not used |
| | 115 | PDAF param_int(5) type_forget |
| | 116 | PDAF Type of forgetting factor; optional |
| | 117 | PDAF 0: fixed forgetting factor (default) |
| | 118 | PDAF 1: adaptive forgetting factor for full domain |
| | 119 | PDAF 2: locally adaptive forgetting factor |
| | 120 | PDAF param_int(6) type_trans |
| | 121 | PDAF Type of ensemble transformation matrix; optional |
| | 122 | PDAF 0: deterministic Omega (default) |
| | 123 | PDAF 1: random orthonormal Omega orthogonal to (1,...,1)^T |
| | 124 | PDAF 2: use product of 0 with random orthonomal matrix with eigenvector (1,...,1)^T |
| | 125 | PDAF (experimental; for random transformations, 1 is recommended) |
| | 126 | PDAF param_int(7) type_sqrt |
| | 127 | PDAF Type of transformation matrix square root; optional |
| | 128 | PDAF 0: symmetric square root (default) |
| | 129 | PDAF 1: Cholesky decomposition |
| | 130 | PDAF param_int(8): observe_ens |
| | 131 | PDAF Application of observation operator H, optional |
| | 132 | PDAF 0: Apply H to ensemble mean to compute innovation |
| | 133 | PDAF 1: Apply H to ensemble states; then compute innovation from their mean (default) |
| | 134 | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| | 135 | PDAF param_int(9): type_obs_init |
| | 136 | PDAF Initialize observations before or after call to prepoststep_pdaf |
| | 137 | PDAF 0: Initialize observations before call to prepoststep_pdaf |
| | 138 | PDAF 1: Initialize observations after call to prepoststep_pdaf (default) |
| | 139 | PDAF --- Floating point parameters (Array param_real) --- |
| | 140 | PDAF param_real(1): forget |
| | 141 | PDAF Forgetting factor (usually >0 and <=1), required |
| | 142 | PDAF --- Further parameters --- |
| | 143 | PDAF n_modeltasks: Number of parallel model integration tasks |
| | 144 | PDAF >=1 for subtype 0; not larger than total number of processors |
| | 145 | PDAF =1 required for subtypes 10 and 11 |
| | 146 | PDAF screen: Control verbosity of PDAF |
| | 147 | PDAF 0: no outputs |
| | 148 | PDAF 1: basic output (default) |
| | 149 | PDAF 2: 1 plus timing output |
| | 150 | PDAF 3: 2 plus debug output |
| | 151 | PDAF +++++++++ End of option overview for the LESTKF ++++++++++ |
| | 152 | }}} |
| | 153 | |
| | 154 | |
| | 155 | === LETKF (filtertype=PDAF_DA_LETKF=5) === |
| | 156 | |
| | 157 | {{{ |
| | 158 | PDAF Available options for LETKF: |
| | 159 | PDAF --- Sub-types (Parameter subtype) --- |
| | 160 | PDAF 0: full ensemble integration; apply T-matrix analogously to SEIK |
| | 161 | PDAF 1: full ensemble integration; formulation cf. Hunt et al. (2007) without T matrix |
| | 162 | PDAF 10: Fixed error space basis; analysis with T-matrix |
| | 163 | PDAF 11: Fixed state covariance matrix; analysis with T-matrix |
| | 164 | PDAF --- Integer parameters (Array param_int) --- |
| | 165 | PDAF param_int(1): dim_p |
| | 166 | PDAF Dimension of state vector (>0), required |
| | 167 | PDAF param_int(2): dim_ens |
| | 168 | PDAF Ensemble size (>0), required |
| | 169 | PDAF param_int(3): dim_lag |
| | 170 | PDAF Size of smoothing lag (>=0), optional |
| | 171 | PDAF 0: no smoothing (default) |
| | 172 | PDAF >0: apply smoother up to specified lag |
| | 173 | PDAF param_int(4): not used |
| | 174 | PDAF param_int(5) type_forget |
| | 175 | PDAF Type of forgetting factor; optional |
| | 176 | PDAF 0: fixed forgetting factor (default) |
| | 177 | PDAF 1: adaptive forgetting factor for full domain |
| | 178 | PDAF 2: locally adaptive forgetting factor |
| | 179 | PDAF param_int(6) type_trans |
| | 180 | PDAF Type of ensemble transformation matrix; optional |
| | 181 | PDAF 0: deterministic transformation (default) |
| | 182 | PDAF 2: use product of 0 with random orthonomal matrix with eigenvector (1,...,1)^T |
| | 183 | PDAF param_int(8): observe_ens |
| | 184 | PDAF Application of observation operator H, optional |
| | 185 | PDAF 0: Apply H to ensemble mean to compute innovation |
| | 186 | PDAF 1: Apply H to ensemble states; then compute innovation from their mean (default) |
| | 187 | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| | 188 | PDAF param_int(9): type_obs_init |
| | 189 | PDAF Initialize observations before or after call to prepoststep_pdaf |
| | 190 | PDAF 0: Initialize observations before call to prepoststep_pdaf |
| | 191 | PDAF 1: Initialize observations after call to prepoststep_pdaf (default) |
| | 192 | PDAF --- Floating point parameters (Array param_real) --- |
| | 193 | PDAF param_real(1): forget |
| | 194 | PDAF Forgetting factor (usually >0 and <=1), required |
| | 195 | PDAF --- Further parameters --- |
| | 196 | PDAF n_modeltasks: Number of parallel model integration tasks |
| | 197 | PDAF >=1 for subtypes 0 and 1; not larger than total number of processors |
| | 198 | PDAF =1 required for subtypes 10 and 11 |
| | 199 | PDAF screen: Control verbosity of PDAF |
| | 200 | PDAF 0: no outputs |
| | 201 | PDAF 1: basic output (default) |
| | 202 | PDAF 2: 1 plus timing output |
| | 203 | PDAF 3: 2 plus debug output |
| | 204 | PDAF +++++++++ End of option overview for the LETKF ++++++++++ |
| | 205 | }}} |
| | 206 | |
| | 207 | |
| | 208 | === LEnKF (filtertype=PDAF_DA_LENKF=8) === |
| | 209 | |
| | 210 | {{{ |
| | 211 | PDAF Available options for LEnKF: |
| | 212 | PDAF --- Sub-types (Parameter subtype) --- |
| | 213 | PDAF 0: Standard EnKF analysis with covariance localization |
| | 214 | PDAF --- Integer parameters (Array param_int) --- |
| | 215 | PDAF param_int(1): dim_p |
| | 216 | PDAF Dimension of state vector (>0), required |
| | 217 | PDAF param_int(2): dim_ens |
| | 218 | PDAF Ensemble size (>0), required |
| | 219 | PDAF param_int(3): not used |
| | 220 | PDAF param_int(4): rank_ana_enkf |
| | 221 | PDAF maximum rank for inversion of HPH^T, optional, default=0 |
| | 222 | PDAF for =0, HPH is inverted by solving the representer equation |
| | 223 | PDAF allowed range is 0 to ensemble size - 1 |
| | 224 | PDAF param_int(5): not used |
| | 225 | PDAF param_int(6): not used |
| | 226 | PDAF param_int(7): not used |
| | 227 | PDAF param_int(8): observe_ens |
| | 228 | PDAF Application of observation operator H, optional |
| | 229 | PDAF 0: Apply H to ensemble mean to compute innovation |
| | 230 | PDAF 1: Apply H to ensemble states; then compute innovation from their mean (default) |
| | 231 | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| | 232 | PDAF param_int(9): type_obs_init |
| | 233 | PDAF Initialize observations before or after call to prepoststep_pdaf |
| | 234 | PDAF 0: Initialize observations before call to prepoststep_pdaf |
| | 235 | PDAF 1: Initialize observations after call to prepoststep_pdaf (default) |
| | 236 | PDAF --- Floating point parameters (Array param_real) --- |
| | 237 | PDAF param_real(1): forget |
| | 238 | PDAF Forgetting factor (usually >0 and <=1), required |
| | 239 | PDAF --- Further parameters --- |
| | 240 | PDAF n_modeltasks: Number of parallel model integration tasks |
| | 241 | PDAF (>=1; not larger than total number of processors) |
| | 242 | PDAF screen: Control verbosity of PDAF |
| | 243 | PDAF 0: no outputs |
| | 244 | PDAF 1: basic output (default) |
| | 245 | PDAF 2: 1 plus timing output |
| | 246 | PDAF 3: 2 plus debug output |
| | 247 | PDAF +++++++++ End of option overview for the LEnKF ++++++++++ |
| | 248 | }}} |
| | 249 | |
| | 250 | |
| | 251 | |
| | 252 | === LSEIK (filtertype=PDAF_DA_LSEIK=3) === |
| | 253 | |
| | 254 | {{{ |
| | 255 | PDAF Available options for LSEIK: |
| | 256 | PDAF --- Sub-types (Parameter subtype) --- |
| | 257 | PDAF 0: full ensemble integration; left-sided application of T |
| | 258 | PDAF 1: full ensemble integration; explicit ensemble transformation |
| | 259 | PDAF 10: Fixed error space basis |
| | 260 | PDAF 11: Fixed state covariance matrix |
| | 261 | PDAF --- Integer parameters (Array param_int) --- |
| | 262 | PDAF param_int(1): dim_p |
| | 263 | PDAF Dimension of state vector (>0), required |
| | 264 | PDAF param_int(2): dim_ens |
| | 265 | PDAF Ensemble size (>0), required |
| | 266 | PDAF param_int(3): not used |
| | 267 | PDAF param_int(4): not used |
| | 268 | PDAF param_int(5) type_forget |
| | 269 | PDAF Type of forgetting factor; optional |
| | 270 | PDAF 0: fixed forgetting factor (default) |
| | 271 | PDAF 1: adaptive forgetting factor |
| | 272 | PDAF 2: locally adaptive forgetting factor |
| | 273 | PDAF param_int(6) type_trans |
| | 274 | PDAF Type of ensemble transformation matrix; optional |
| | 275 | PDAF 0: deterministic Omega (default) |
| | 276 | PDAF 1: random orthonormal Omega orthogonal to (1,...,1)^T |
| | 277 | PDAF 2: use product of 0 with random orthonomal matrix with eigenvector (1,...,1)^T |
| | 278 | PDAF (experimental; for random transformations, 1 is recommended) |
| | 279 | PDAF param_int(7) type_sqrt |
| | 280 | PDAF Type of transformation matrix square root; optional |
| | 281 | PDAF (Only relevant for subtype/=11) |
| | 282 | PDAF 0: symmetric square root (default) |
| | 283 | PDAF 1: Cholesky decomposition |
| | 284 | PDAF param_int(8): observe_ens |
| | 285 | PDAF Application of observation operator H, optional |
| | 286 | PDAF 0: Apply H to ensemble mean to compute innovation |
| | 287 | PDAF 1: Apply H to ensemble states; then compute innovation from their mean (default) |
| | 288 | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| | 289 | PDAF param_int(9): type_obs_init |
| | 290 | PDAF Initialize observations before or after call to prepoststep_pdaf |
| | 291 | PDAF 0: Initialize observations before call to prepoststep_pdaf |
| | 292 | PDAF 1: Initialize observations after call to prepoststep_pdaf (default) |
| | 293 | PDAF --- Floating point parameters (Array param_real) --- |
| | 294 | PDAF param_real(1): forget |
| | 295 | PDAF Forgetting factor (usually >0 and <=1), required |
| | 296 | PDAF --- Further parameters --- |
| | 297 | PDAF n_modeltasks: Number of parallel model integration tasks |
| | 298 | PDAF >=1 for subtypes 0 and 1; not larger than total number of processors |
| | 299 | PDAF =1 required for subtypes 10 and 11 |
| | 300 | PDAF screen: Control verbosity of PDAF |
| | 301 | PDAF 0: no outputs |
| | 302 | PDAF 1: basic output (default) |
| | 303 | PDAF 2: 1 plus timing output |
| | 304 | PDAF 3: 2 plus debug output |
| | 305 | PDAF --- Internal parameter (defined inside PDAF) --- |
| | 306 | PDAF Nm1vsN: Normalization of covariance matrix; default: 1 |
| | 307 | PDAF 0: normalization with 1/(Ensemble size) |
| | 308 | PDAF (original SEIK, mainly for compatibility with older studies) |
| | 309 | PDAF 1: normalization with 1/(Ensemble size - 1) |
| | 310 | PDAF (sample covariance matrix consistent with other EnKFs) |
| | 311 | PDAF +++++++++ End of option overview for the LSEIK filter ++++++++++ |
| | 312 | }}} |
| | 313 | |
| | 314 | |
| | 315 | |
| | 316 | === ENSRF/EAKF (filtertype=PDAF_DA_ENSRF=13) === |
| | 317 | |
| | 318 | {{{ |
| | 319 | PDAF Available options for ENSRF: |
| | 320 | PDAF --- Sub-types (Parameter subtype) --- |
| | 321 | PDAF 0: ENSRF with serial observation processing (cf. Houtekamer/Mitchell, 2002) |
| | 322 | PDAF 1: EAKF/2-step local least squares filter (cf. Anderson, 2003) |
| | 323 | PDAF --- Integer parameters (Array param_int) --- |
| | 324 | PDAF param_int(1): dim_p |
| | 325 | PDAF Dimension of state vector (>0), required |
| | 326 | PDAF param_int(2): dim_ens |
| | 327 | PDAF Ensemble size (>0), required |
| | 328 | PDAF param_int(3): not used |
| | 329 | PDAF param_int(4): not used |
| | 330 | PDAF param_int(5): not used |
| | 331 | PDAF param_int(6): not used |
| | 332 | PDAF param_int(7): not used |
| | 333 | PDAF param_int(8): observe_ens |
| | 334 | PDAF Application of observation operator H, optional |
| | 335 | PDAF 0: Apply H to ensemble mean to compute innovation |
| | 336 | PDAF 1: Apply H to ensemble states; then compute innovation from their mean (default) |
| | 337 | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| | 338 | PDAF param_int(9): type_obs_init |
| | 339 | PDAF Initialize observations before or after call to prepoststep_pdaf |
| | 340 | PDAF 0: Initialize observations before call to prepoststep_pdaf |
| | 341 | PDAF 1: Initialize observations after call to prepoststep_pdaf (default) |
| | 342 | PDAF --- Floating point parameters (Array param_real) --- |
| | 343 | PDAF param_real(1): forget |
| | 344 | PDAF Forgetting factor (usually >0 and <=1), required |
| | 345 | PDAF --- Further parameters --- |
| | 346 | PDAF n_modeltasks: Number of parallel model integration tasks |
| | 347 | PDAF (>=1; not larger than total number of processors) |
| | 348 | PDAF screen: Control verbosity of PDAF |
| | 349 | PDAF 0: no outputs |
| | 350 | PDAF 1: basic output (default) |
| | 351 | PDAF 2: 1 plus timing output |
| | 352 | PDAF 3: 2 plus debug output |
| | 353 | PDAF +++++++++ End of option overview for the ENSRF ++++++++++ |
| | 354 | }}} |
| | 355 | |
| | 356 | |
| | 357 | == Global Ensemble Kalman Filters == |
| | 358 | |
| | 359 | === ESTKF (filtertype=PDAF_DA_ESTKF=6) === |
| | 360 | |
| | 361 | {{{ |
| | 362 | PDAF Available options for ESTKF: |
| | 363 | PDAF --- Sub-types (Parameter subtype) --- |
| | 364 | PDAF 0: Standard implementation with ensemble integration |
| | 365 | PDAF 10: Fixed error space basis |
| | 366 | PDAF 11: Fixed state covariance matrix |
| | 367 | PDAF --- Integer parameters (Array param_int) --- |
| | 368 | PDAF param_int(1): dim_p |
| | 369 | PDAF Dimension of state vector (>0), required |
| | 370 | PDAF param_int(2): dim_ens |
| | 371 | PDAF Ensemble size (>0), required |
| | 372 | PDAF param_int(3): dim_lag |
| | 373 | PDAF Size of smoothing lag (>=0), optional |
| | 374 | PDAF 0: no smoothing (default) |
| | 375 | PDAF >0: apply smoother up to specified lag |
| | 376 | PDAF param_int(4): not used |
| | 377 | PDAF param_int(5) type_forget |
| | 378 | PDAF Type of forgetting factor; optional |
| | 379 | PDAF 0: fixed forgetting factor (default) |
| | 380 | PDAF 1: adaptive forgetting factor (experimental) |
| | 381 | PDAF param_int(6) type_trans |
| | 382 | PDAF Type of ensemble transformation matrix; optional |
| | 383 | PDAF 0: deterministic Omega (default) |
| | 384 | PDAF 1: random orthonormal Omega orthogonal to (1,...,1)^T |
| | 385 | PDAF 2: use product of 0 with random orthonomal matrix with eigenvector (1,...,1)^T |
| | 386 | PDAF (experimental; for random transformations, 0 or 1 are recommended) |
| | 387 | PDAF param_int(7) type_sqrt |
| | 388 | PDAF Type of transformation matrix square root; optional |
| | 389 | PDAF 0: symmetric square root (default) |
| | 390 | PDAF 1: Cholesky decomposition |
| | 391 | PDAF param_int(8): observe_ens |
| | 392 | PDAF Application of observation operator H, optional |
| | 393 | PDAF 0: Apply H to ensemble mean to compute innovation |
| | 394 | PDAF 1: Apply H to ensemble states; then compute innovation from their mean (default) |
| | 395 | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| | 396 | PDAF param_int(9): type_obs_init |
| | 397 | PDAF Initialize observations before or after call to prepoststep_pdaf |
| | 398 | PDAF 0: Initialize observations before call to prepoststep_pdaf |
| | 399 | PDAF 1: Initialize observations after call to prepoststep_pdaf (default) |
| | 400 | PDAF --- Floating point parameters (Array param_real) --- |
| | 401 | PDAF param_real(1): forget |
| | 402 | PDAF Forgetting factor (usually >0 and <=1), required |
| | 403 | PDAF --- Further parameters --- |
| | 404 | PDAF n_modeltasks: Number of parallel model integration tasks |
| | 405 | PDAF >=1 for subtype 0; not larger than total number of processors |
| | 406 | PDAF =1 required for subtypes 10 and 11 |
| | 407 | PDAF screen: Control verbosity of PDAF |
| | 408 | PDAF 0: no outputs |
| | 409 | PDAF 1: basic output (default) |
| | 410 | PDAF 2: 1 plus timing output |
| | 411 | PDAF 3: 2 plus debug output |
| | 412 | PDAF +++++++++ End of option overview for the ESTKF ++++++++++ |
| | 413 | }}} |
| | 414 | |
| | 415 | |
| | 416 | |
| | 417 | === ETKF (filtertype=PDAF_DA_ETKF=4) === |
| | 418 | |
| | 419 | {{{ |
| | 420 | PDAF Available options for ETKF: |
| | 421 | PDAF --- Sub-types (Parameter subtype) --- |
| | 422 | PDAF 0: full ensemble integration; apply T-matrix analogously to SEIK |
| | 423 | PDAF 1: full ensemble integration; formulation cf. Hunt et al. (2007) without T matrix |
| | 424 | PDAF 10: Fixed error space basis; analysis with T-matrix |
| | 425 | PDAF 11: Fixed state covariance matrix; analysis with T-matrix |
| | 426 | PDAF --- Integer parameters (Array param_int) --- |
| | 427 | PDAF param_int(1): dim_p |
| | 428 | PDAF Dimension of state vector (>0), required |
| | 429 | PDAF param_int(2): dim_ens |
| | 430 | PDAF Ensemble size (>0), required |
| | 431 | PDAF param_int(3): dim_lag |
| | 432 | PDAF Size of smoothing lag (>=0), optional |
| | 433 | PDAF 0: no smoothing (default) |
| | 434 | PDAF >0: apply smoother up to specified lag |
| | 435 | PDAF param_int(4): not used |
| | 436 | PDAF param_int(5) type_forget |
| | 437 | PDAF Type of forgetting factor; optional |
| | 438 | PDAF 0: fixed forgetting factor (default) |
| | 439 | PDAF 1: adaptive forgetting factor (experimental) |
| | 440 | PDAF param_int(6) type_trans |
| | 441 | PDAF Type of ensemble transformation matrix; optional |
| | 442 | PDAF 0: deterministic transformation (default) |
| | 443 | PDAF 2: use product of 0 with random orthonomal matrix with eigenvector (1,...,1)^T |
| | 444 | PDAF param_int(7): not used |
| | 445 | PDAF param_int(8): observe_ens |
| | 446 | PDAF Application of observation operator H, optional |
| | 447 | PDAF 0: Apply H to ensemble mean to compute innovation |
| | 448 | PDAF 1: Apply H to ensemble states; then compute innovation from their mean (default) |
| | 449 | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| | 450 | PDAF param_int(9): type_obs_init |
| | 451 | PDAF Initialize observations before or after call to prepoststep_pdaf |
| | 452 | PDAF 0: Initialize observations before call to prepoststep_pdaf |
| | 453 | PDAF 1: Initialize observations after call to prepoststep_pdaf (default) |
| | 454 | PDAF --- Floating point parameters (Array param_real) --- |
| | 455 | PDAF param_real(1): forget |
| | 456 | PDAF Forgetting factor (usually >0 and <=1), required |
| | 457 | PDAF --- Further parameters --- |
| | 458 | PDAF n_modeltasks: Number of parallel model integration tasks |
| | 459 | PDAF >=1 for subtypes 0 and 1; not larger than total number of processors |
| | 460 | PDAF =1 required for subtypes 10 and 11 |
| | 461 | PDAF screen: Control verbosity of PDAF |
| | 462 | PDAF 0: no outputs |
| | 463 | PDAF 1: basic output (default) |
| | 464 | PDAF 2: 1 plus timing output |
| | 465 | PDAF 3: 2 plus debug output |
| | 466 | PDAF +++++++++ End of option overview for the ETKF ++++++++++ |
| | 467 | }}} |
| | 468 | |
| | 469 | |
| | 470 | |
| | 471 | === EnKF (filtertype=PDAF_DA_ENKF=2) === |
| | 472 | |
| | 473 | {{{ |
| | 474 | PDAF Available options for EnKF: |
| | 475 | PDAF --- Sub-types (Parameter subtype) --- |
| | 476 | PDAF 0: Full ensemble integration; analysis for 2*dim_obs>dim_ens |
| | 477 | PDAF 1: Full ensemble integration; analysis for 2*dim_obs<=dim_ens |
| | 478 | PDAF --- Integer parameters (Array param_int) --- |
| | 479 | PDAF param_int(1): dim_p |
| | 480 | PDAF Dimension of state vector (>0), required |
| | 481 | PDAF param_int(2): dim_ens |
| | 482 | PDAF Ensemble size (>0), required |
| | 483 | PDAF param_int(3): dim_lag |
| | 484 | PDAF Size of smoothing lag (>=0), optional |
| | 485 | PDAF 0: no smoothing (default) |
| | 486 | PDAF >0: apply smoother up to specified lag |
| | 487 | PDAF param_int(4): rank_ana_enkf |
| | 488 | PDAF maximum rank for inversion of HPH^T, optional, default=0 |
| | 489 | PDAF for =0, HPH is inverted by solving the representer equation |
| | 490 | PDAF allowed range is 0 to ensemble size - 1 |
| | 491 | PDAF param_int(5): not used |
| | 492 | PDAF param_int(6): not used |
| | 493 | PDAF param_int(7): not used |
| | 494 | PDAF param_int(8): observe_ens |
| | 495 | PDAF Application of observation operator H, optional |
| | 496 | PDAF 0: Apply H to ensemble mean to compute innovation |
| | 497 | PDAF 1: Apply H to ensemble states; then compute innovation from their mean (default) |
| | 498 | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| | 499 | PDAF param_int(9): type_obs_init |
| | 500 | PDAF Initialize observations before or after call to prepoststep_pdaf |
| | 501 | PDAF 0: Initialize observations before call to prepoststep_pdaf |
| | 502 | PDAF 1: Initialize observations after call to prepoststep_pdaf (default) |
| | 503 | PDAF --- Floating point parameters (Array param_real) --- |
| | 504 | PDAF param_real(1): forget |
| | 505 | PDAF Forgetting factor (usually >0 and <=1), required |
| | 506 | PDAF --- Further parameters --- |
| | 507 | PDAF n_modeltasks: Number of parallel model integration tasks |
| | 508 | PDAF (>=1; not larger than total number of processors) |
| | 509 | PDAF screen: Control verbosity of PDAF |
| | 510 | PDAF 0: no outputs |
| | 511 | PDAF 1: basic output (default) |
| | 512 | PDAF 2: 1 plus timing output |
| | 513 | PDAF 3: 2 plus debug output |
| | 514 | PDAF +++++++++ End of option overview for the EnKF ++++++++++ |
| | 515 | }}} |
| | 516 | |
| | 517 | |
| | 518 | === SEIK (filtertype=PDAF_DA_SEIK=1) === |
| 65 | | == EnKF (filtertype=2) == |
| 66 | | |
| 67 | | {{{ |
| 68 | | PDAF Available options for EnKF: |
| 69 | | PDAF --- Sub-types (Parameter subtype) --- |
| 70 | | PDAF 0: Full ensemble integration; analysis for 2*dim_obs>dim_ens |
| 71 | | PDAF 1: Full ensemble integration; analysis for 2*dim_obs<=dim_ens |
| 72 | | PDAF --- Integer parameters (Array param_int) --- |
| 73 | | PDAF param_int(1): Dimension of state vector (>0), required |
| 74 | | PDAF param_int(2): Ensemble size (>0), required |
| 75 | | PDAF param_int(3): maximum rank for inversion of HPH^T, optional, default=0 |
| 76 | | PDAF (for =0, HPH is inverted by solving the representer equation) |
| 77 | | PDAF (if set to >=ensemble size, it is reset to ensemble size - 1) |
| 78 | | PDAF param_int(4): not used |
| 79 | | PDAF param_int(5): Size of smoothing lag (>=0), optional |
| 80 | | PDAF 0: no smoothing (default) |
| 81 | | PDAF >0: apply smoother up to specified lag |
| 82 | | PDAF --- Floating point parameters (Array param_real) --- |
| 83 | | PDAF param_real(1): Forgetting factor (usually >0 and <=1), required |
| 84 | | PDAF --- Further parameters --- |
| 85 | | PDAF n_modeltasks: Number of parallel model integration tasks |
| 86 | | PDAF (>=1; not larger than total number of processors) |
| 87 | | PDAF screen: Control verbosity of PDAF |
| 88 | | PDAF 0: no outputs |
| 89 | | PDAF 1: basic output (default) |
| 90 | | PDAF 2: 1 plus timing output |
| 91 | | PDAF 3: 2 plus debug output |
| 92 | | PDAF +++++++++ End of option overview for the EnKF ++++++++++ |
| 93 | | }}} |
| 94 | | |
| 95 | | |
| 96 | | == LSEIK (filtertype=3) == |
| 97 | | |
| 98 | | {{{ |
| 99 | | PDAF Available options for LSEIK: |
| 100 | | PDAF --- Sub-types (Parameter subtype) --- |
| 101 | | PDAF 0: full ensemble integration; left-sided application of T |
| 102 | | PDAF 2: Fixed error space basis |
| 103 | | PDAF 3: Fixed state covariance matrix |
| 104 | | PDAF --- Integer parameters (Array param_int) --- |
| 105 | | PDAF param_int(1): Dimension of state vector (>0), required |
| 106 | | PDAF param_int(2): Ensemble size (>0), required |
| 107 | | PDAF param_int(3): not used |
| 108 | | PDAF param_int(4): Apply incremental updating; optional |
| 109 | | PDAF 0: no incremental updating (default) |
| 110 | | PDAF 1: apply incremental updating |
| 111 | | PDAF param_int(5): Type of forgetting factor; optional |
| 112 | | PDAF 0: fixed forgetting factor (default) |
| 113 | | PDAF 1: adaptive forgetting factor for full domain (experimental) |
| 114 | | PDAF 2: locally adaptive forgetting factor (experimental) |
| 115 | | PDAF param_int(6): Type of ensemble transformation matrix; optional |
| 116 | | PDAF 0: deterministic omega (default) |
| 117 | | PDAF 1: random orthonormal omega orthogonal to (1,...,1)^T |
| 118 | | PDAF 2: use product of 0 with random orthonomal matrix with eigenvector (1,...,1)^T |
| 119 | | PDAF (experimental; for random transformations, 1 is recommended) |
| 120 | | PDAF param_int(7): Type of transformation matrix square root; optional |
| 121 | | PDAF (Only relevant for subtype/=3) |
| 122 | | PDAF 0: symmetric square root (default) |
| 123 | | PDAF 1: Cholesky decomposition |
| 124 | | PDAF --- Floating point parameters (Array param_real) --- |
| 125 | | PDAF param_real(1): Forgetting factor (usually >0 and <=1), required |
| 126 | | PDAF --- Further parameters --- |
| 127 | | PDAF n_modeltasks: Number of parallel model integration tasks |
| 128 | | PDAF >=1 for subtypes 0 and 1; not larger than total number of processors |
| 129 | | PDAF =1 required for subtypes 2 and 3 |
| 130 | | PDAF screen: Control verbosity of PDAF |
| 131 | | PDAF 0: no outputs |
| 132 | | PDAF 1: basic output (default) |
| 133 | | PDAF 2: 1 plus timing output |
| 134 | | PDAF 3: 2 plus debug output |
| 135 | | PDAF --- Internal parameter (defined inside PDAF) --- |
| 136 | | PDAF Nm1vsN: Normalization of covariance matrix; default: 1 |
| 137 | | PDAF 0: normalization with 1/(Ensemble size) |
| 138 | | PDAF (original SEIK, mainly for compatibility with older studies) |
| 139 | | PDAF 1: normalization with 1/(Ensemble size - 1) |
| 140 | | PDAF (sample covariance matrix consistent with other EnKFs) |
| 141 | | PDAF +++++++++ End of option overview for the LSEIK filter ++++++++++ |
| 142 | | }}} |
| 143 | | |
| 144 | | |
| 145 | | == ETKF (filtertype=4) == |
| 146 | | |
| 147 | | {{{ |
| 148 | | PDAF Available options for ETKF: |
| 149 | | PDAF --- Sub-types (Parameter subtype) --- |
| 150 | | PDAF 0: full ensemble integration; apply T-matrix analogously to SEIK |
| 151 | | PDAF 1: full ensemble integration; formulation without T matrix |
| 152 | | PDAF 2: Fixed error space basis; analysis with T-matrix |
| 153 | | PDAF 3: Fixed state covariance matrix; analysis with T-matrix |
| 154 | | PDAF --- Integer parameters (Array param_int) --- |
| 155 | | PDAF param_int(1): Dimension of state vector (>0), required |
| 156 | | PDAF param_int(2): Ensemble size (>0), required |
| 157 | | PDAF param_int(3): Size of smoothing lag (>=0), optional |
| 158 | | PDAF 0: no smoothing (default) |
| 159 | | PDAF >0: apply smoother up to specified lag |
| 160 | | PDAF param_int(4): not used |
| 161 | | PDAF param_int(5): Type of forgetting factor; optional |
| 162 | | PDAF 0: fixed forgetting factor (default) |
| 163 | | PDAF 1: adaptive forgetting factor (experimental) |
| 164 | | PDAF param_int(6): Type of ensemble transformation matrix; optional |
| 165 | | PDAF 0: deterministic transformation (default) |
| 166 | | PDAF 2: use product of 0 with random orthonomal matrix with eigenvector (1,...,1)^T |
| 167 | | PDAF param_int(7): not used |
| 168 | | PDAF param_int(8): Application of observation operator H |
| 169 | | PDAF 0: Apply H to ensemble mean to compute residual (default) |
| 170 | | PDAF 1: Apply H to all ensemble states; then compute residual from mean of these |
| 171 | | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| 172 | | PDAF --- Floating point parameters (Array param_real) --- |
| 173 | | PDAF param_real(1): Forgetting factor (usually >0 and <=1), required |
| 174 | | PDAF --- Further parameters --- |
| 175 | | PDAF n_modeltasks: Number of parallel model integration tasks |
| 176 | | PDAF >=1 for subtypes 0 and 1; not larger than total number of processors |
| 177 | | PDAF =1 required for subtypes 2 and 3 |
| 178 | | PDAF screen: Control verbosity of PDAF |
| 179 | | PDAF 0: no outputs |
| 180 | | PDAF 1: basic output (default) |
| 181 | | PDAF 2: 1 plus timing output |
| 182 | | PDAF 3: 2 plus debug output |
| 183 | | PDAF +++++++++ End of option overview for the ETKF ++++++++++ |
| 184 | | }}} |
| 185 | | |
| 186 | | |
| 187 | | == LETKF (filtertype=5) == |
| 188 | | |
| 189 | | {{{ |
| 190 | | PDAF Available options for LETKF: |
| 191 | | PDAF --- Sub-types (Parameter subtype) --- |
| 192 | | PDAF 0: full ensemble integration; apply T-matrix analogously to SEIK |
| 193 | | PDAF 2: Fixed error space basis; analysis with T-matrix |
| 194 | | PDAF 3: Fixed state covariance matrix; analysis with T-matrix |
| 195 | | PDAF --- Integer parameters (Array param_int) --- |
| 196 | | PDAF param_int(1): Dimension of state vector (>0), required |
| 197 | | PDAF param_int(2): Ensemble size (>0), required |
| 198 | | PDAF param_int(3): Size of smoothing lag (>=0), optional |
| 199 | | PDAF 0: no smoothing (default) |
| 200 | | PDAF >0: apply smoother up to specified lag |
| 201 | | PDAF param_int(4): not used |
| 202 | | PDAF param_int(5): Type of forgetting factor; optional |
| 203 | | PDAF 0: fixed forgetting factor (default) |
| 204 | | PDAF 1: adaptive forgetting factor for full domain (experimental) |
| 205 | | PDAF 2: locally adaptive forgetting factor (experimental) |
| 206 | | PDAF param_int(6): Type of ensemble transformation matrix; optional |
| 207 | | PDAF 0: deterministic transformation (default) |
| 208 | | PDAF 2: use product of 0 with random orthonomal matrix with eigenvector (1,...,1)^T |
| 209 | | PDAF --- Floating point parameters (Array param_real) --- |
| 210 | | PDAF param_real(1): Forgetting factor (usually >0 and <=1), required |
| 211 | | PDAF --- Further parameters --- |
| 212 | | PDAF n_modeltasks: Number of parallel model integration tasks |
| 213 | | PDAF >=1 for subtypes 0 and 1; not larger than total number of processors |
| 214 | | PDAF =1 required for subtypes 2 and 3 |
| 215 | | PDAF screen: Control verbosity of PDAF |
| 216 | | PDAF 0: no outputs |
| 217 | | PDAF 1: basic output (default) |
| 218 | | PDAF 2: 1 plus timing output |
| 219 | | PDAF 3: 2 plus debug output |
| 220 | | PDAF +++++++++ End of option overview for the LETKF ++++++++++ |
| 221 | | }}} |
| 222 | | |
| 223 | | |
| 224 | | == ESTKF (filtertype=6) == |
| 225 | | |
| 226 | | {{{ |
| 227 | | PDAF Available options for ESTKF: |
| | 581 | |
| | 582 | |
| | 583 | |
| | 584 | |
| | 585 | |
| | 586 | == Nonlinear DA Methods == |
| | 587 | |
| | 588 | === NETF (filtertype=PDAF_DA_NETF=9) === |
| | 589 | |
| | 590 | {{{ |
| | 591 | PDAF Available options for NETF: |
| 230 | | PDAF 2: Fixed error space basis |
| 231 | | PDAF 3: Fixed state covariance matrix |
| 232 | | PDAF --- Integer parameters (Array param_int) --- |
| 233 | | PDAF param_int(1): Dimension of state vector (>0), required |
| 234 | | PDAF param_int(2): Ensemble size (>0), required |
| 235 | | PDAF param_int(3): Size of smoothing lag (>=0), optional |
| 236 | | PDAF 0: no smoothing (default) |
| 237 | | PDAF >0: apply smoother up to specified lag |
| 238 | | PDAF param_int(4): not used |
| 239 | | PDAF param_int(5): Type of forgetting factor; optional |
| 240 | | PDAF 0: fixed forgetting factor (default) |
| 241 | | PDAF 1: adaptive forgetting factor (experimental) |
| 242 | | PDAF param_int(6): Type of ensemble transformation matrix; optional |
| 243 | | PDAF 0: deterministic omega (default) |
| 244 | | PDAF 1: random orthonormal omega orthogonal to (1,...,1)^T |
| 245 | | PDAF 2: use product of 0 with random orthonomal matrix with eigenvector (1,...,1)^T |
| 246 | | PDAF (experimental; for random transformations, 0 or 1 are recommended) |
| 247 | | PDAF param_int(7): Type of transformation matrix square root; optional |
| 248 | | PDAF 0: symmetric square root (default) |
| 249 | | PDAF 1: Cholesky decomposition |
| 250 | | PDAF param_int(8): Application of observation operator H |
| 251 | | PDAF 0: Apply H to ensemble mean to compute residual (default) |
| 252 | | PDAF 1: Apply H to all ensemble states; then compute residual from mean of these |
| 253 | | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| 254 | | PDAF --- Floating point parameters (Array param_real) --- |
| 255 | | PDAF param_real(1): Forgetting factor (usually >0 and <=1), required |
| 256 | | PDAF --- Further parameters --- |
| 257 | | PDAF n_modeltasks: Number of parallel model integration tasks |
| 258 | | PDAF >=1 for subtypes 0 and 1; not larger than total number of processors |
| 259 | | PDAF =1 required for subtypes 2 and 3 |
| 260 | | PDAF screen: Control verbosity of PDAF |
| 261 | | PDAF 0: no outputs |
| 262 | | PDAF 1: basic output (default) |
| 263 | | PDAF 2: 1 plus timing output |
| 264 | | PDAF 3: 2 plus debug output |
| 265 | | PDAF +++++++++ End of option overview for the ESTKF ++++++++++ |
| 266 | | }}} |
| 267 | | |
| 268 | | |
| 269 | | == LESTKF (filtertype=7) == |
| 270 | | |
| 271 | | {{{ |
| 272 | | PDAF Available options for LESTKF: |
| | 594 | PDAF --- Integer parameters (Array param_int) --- |
| | 595 | PDAF param_int(1): dim_p |
| | 596 | PDAF Dimension of state vector (>0), required |
| | 597 | PDAF param_int(2): dim_ens |
| | 598 | PDAF Ensemble size (>0), required |
| | 599 | PDAF param_int(3): dim_lag |
| | 600 | PDAF Size of smoothing lag (>=0), optional |
| | 601 | PDAF 0: no smoothing (default) |
| | 602 | PDAF >0: apply smoother up to specified lag |
| | 603 | PDAF param_int(4): type_noise |
| | 604 | PDAF Type of ensemble perturbations, optional |
| | 605 | PDAF 0: no perturbations (default) |
| | 606 | PDAF 1: constant standard deviation |
| | 607 | PDAF 2: relative to ensemble standard deviation |
| | 608 | PDAF param_int(5) type_forget |
| | 609 | PDAF Type of forgetting factor; optional |
| | 610 | PDAF 0: forgetting factor on forecast ensemble (default) |
| | 611 | PDAF 2: forgetting factor on analysis ensemble |
| | 612 | PDAF param_int(6) type_trans |
| | 613 | PDAF Type of ensemble transformation matrix; optional |
| | 614 | PDAF 0: random orthonormal matrix orthogonal to (1,...,1)^T (default) |
| | 615 | PDAF 1: deterministic transformation |
| | 616 | PDAF param_int(7): type_winf |
| | 617 | PDAF Type of weights inflation; optional |
| | 618 | PDAF 0: no weights inflation (default) |
| | 619 | PDAF 1: inflate so that N_eff/N > param_real(2) |
| | 620 | PDAF param_int(8): observe_ens |
| | 621 | PDAF Application of observation operator H, optional |
| | 622 | PDAF Note: This parameter has no influence on the NETF assimilation result |
| | 623 | PDAF 0: Apply H to ensemble mean to compute innovation |
| | 624 | PDAF 1: Apply H to ensemble states; then compute innovation from their mean (default) |
| | 625 | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| | 626 | PDAF param_int(9): type_obs_init |
| | 627 | PDAF Initialize observations before or after call to prepoststep_pdaf |
| | 628 | PDAF 0: Initialize observations before call to prepoststep_pdaf |
| | 629 | PDAF 1: Initialize observations after call to prepoststep_pdaf (default) |
| | 630 | PDAF --- Floating point parameters (Array param_real) --- |
| | 631 | PDAF param_real(1): forget |
| | 632 | PDAF Forgetting factor (usually >0 and <=1), required |
| | 633 | PDAF param_real(2): limit_winf |
| | 634 | PDAF Limit for weigts inflation N_eff/N > param_real(2), optional, default=0.0 |
| | 635 | PDAF param_real(3): noise_amp |
| | 636 | PDAF Ensemble perturbation level (>0), required, only used if param_int(4)>0 |
| | 637 | PDAF --- Further parameters --- |
| | 638 | PDAF n_modeltasks: Number of parallel model integration tasks |
| | 639 | PDAF >=1; not larger than total number of processors |
| | 640 | PDAF screen: Control verbosity of PDAF |
| | 641 | PDAF 0: no outputs |
| | 642 | PDAF 1: basic output (default) |
| | 643 | PDAF 2: 1 plus timing output |
| | 644 | PDAF 3: 2 plus debug output |
| | 645 | PDAF +++++++++ End of option overview for the NETF ++++++++++ |
| | 646 | }}} |
| | 647 | |
| | 648 | |
| | 649 | |
| | 650 | |
| | 651 | === LNETF (filtertype=PDAF_DA_LNETF=10) === |
| | 652 | |
| | 653 | {{{ |
| | 654 | PDAF Available options for LNETF: |
| 275 | | PDAF 2: Fixed error space basis |
| 276 | | PDAF 3: Fixed state covariance matrix |
| 277 | | PDAF --- Integer parameters (Array param_int) --- |
| 278 | | PDAF param_int(1): Dimension of state vector (>0), required |
| 279 | | PDAF param_int(2): Ensemble size (>0), required |
| 280 | | PDAF param_int(3): Size of smoothing lag (>=0), optional |
| 281 | | PDAF 0: no smoothing (default) |
| 282 | | PDAF >0: apply smoother up to specified lag |
| 283 | | PDAF param_int(4): not used |
| 284 | | PDAF param_int(5): Type of forgetting factor; optional |
| 285 | | PDAF 0: fixed forgetting factor (default) |
| 286 | | PDAF 1: adaptive forgetting factor for full domain (experimental) |
| 287 | | PDAF 2: locally adaptive forgetting factor (experimental) |
| 288 | | PDAF param_int(6): Type of ensemble transformation matrix; optional |
| 289 | | PDAF 0: deterministic omega (default) |
| 290 | | PDAF 1: random orthonormal omega orthogonal to (1,...,1)^T |
| 291 | | PDAF 2: use product of 0 with random orthonomal matrix with eigenvector (1,...,1)^T |
| 292 | | PDAF (experimental; for random transformations, 1 is recommended) |
| 293 | | PDAF param_int(7): Type of transformation matrix square root; optional |
| 294 | | PDAF 0: symmetric square root (default) |
| 295 | | PDAF 1: Cholesky decomposition |
| 296 | | PDAF --- Floating point parameters (Array param_real) --- |
| 297 | | PDAF param_real(1): Forgetting factor (usually >0 and <=1), required |
| 298 | | PDAF --- Further parameters --- |
| 299 | | PDAF n_modeltasks: Number of parallel model integration tasks |
| 300 | | PDAF >=1 for subtypes 0 and 1; not larger than total number of processors |
| 301 | | PDAF =1 required for subtypes 2 and 3 |
| 302 | | PDAF screen: Control verbosity of PDAF |
| 303 | | PDAF 0: no outputs |
| 304 | | PDAF 1: basic output (default) |
| 305 | | PDAF 2: 1 plus timing output |
| 306 | | PDAF 3: 2 plus debug output |
| 307 | | PDAF +++++++++ End of option overview for the LESTKF ++++++++++ |
| 308 | | }}} |
| 309 | | |
| 310 | | |
| 311 | | == LEnKF (filtertype=8) == |
| 312 | | |
| 313 | | {{{ |
| 314 | | PDAF Available options for LEnKF: |
| 315 | | PDAF --- Sub-types (Parameter subtype) --- |
| 316 | | PDAF 0: Full ensemble integration; analysis with covariance localization |
| 317 | | PDAF --- Integer parameters (Array param_int) --- |
| 318 | | PDAF param_int(1): Dimension of state vector (>0), required |
| 319 | | PDAF param_int(2): Ensemble size (>0), required |
| 320 | | PDAF param_int(3): maximum rank for inversion of HPH^T, optional, default=0 |
| 321 | | PDAF (for =0, HPH is inverted by solving the representer equation) |
| 322 | | PDAF (if set to >=ensemble size, it is reset to ensemble size - 1) |
| 323 | | PDAF --- Floating point parameters (Array param_real) --- |
| 324 | | PDAF param_real(1): Forgetting factor (usually >0 and <=1), required |
| 325 | | PDAF --- Further parameters --- |
| 326 | | PDAF n_modeltasks: Number of parallel model integration tasks |
| 327 | | PDAF (>=1; not larger than total number of processors) |
| 328 | | PDAF screen: Control verbosity of PDAF |
| 329 | | PDAF 0: no outputs |
| 330 | | PDAF 1: basic output (default) |
| 331 | | PDAF 2: 1 plus timing output |
| 332 | | PDAF 3: 2 plus debug output |
| 333 | | PDAF +++++++++ End of option overview for the LEnKF ++++++++++ |
| 334 | | }}} |
| 335 | | |
| 336 | | |
| 337 | | == NETF (filtertype=9) == |
| 338 | | |
| 339 | | {{{ |
| 340 | | PDAF Available options for NETF: |
| 341 | | PDAF --- Sub-types (Parameter subtype) --- |
| 342 | | PDAF 0: Standard implementation with ensemble integration |
| 343 | | PDAF --- Integer parameters (Array param_int) --- |
| 344 | | PDAF param_int(1): Dimension of state vector (>0), required |
| 345 | | PDAF param_int(2): Ensemble size (>0), required |
| 346 | | PDAF param_int(3): Size of smoothing lag (>=0), optional |
| 347 | | PDAF 0: no smoothing (default) |
| 348 | | PDAF >0: apply smoother up to specified lag |
| 349 | | PDAF param_int(4): Type of ensemble perturbations, optional |
| 350 | | PDAF 0: no perturbations (default) |
| 351 | | PDAF 1: constant standard deviation |
| 352 | | PDAF 2: relative to ensemble standard deviation |
| 353 | | PDAF param_int(5): Type of forgetting factor; optional |
| 354 | | PDAF 0: forgetting factor on forecast ensemble (default) |
| 355 | | PDAF 2: forgetting factor on analysis ensemble |
| 356 | | PDAF param_int(6): Type of ensemble transformation matrix; optional |
| 357 | | PDAF 0: random orthonormal matrix orthogonal to (1,...,1)^T (default) |
| 358 | | PDAF 1: deterministic transformation |
| 359 | | PDAF param_int(7): Type of weights inflation; optional |
| 360 | | PDAF 0: no weights inflation (default) |
| 361 | | PDAF 1: inflate so that N_eff/N > param_real(2) |
| 362 | | PDAF --- Floating point parameters (Array param_real) --- |
| 363 | | PDAF param_real(1): Forgetting factor (usually >0 and <=1), required |
| 364 | | PDAF param_real(2): Limit for weigts inflation N_eff/N > param_real(2), optional, default=0.0 |
| 365 | | PDAF param_real(3): Ensemble perturbation level (>0), required, only used if param_int(4)>0 |
| 366 | | PDAF --- Further parameters --- |
| 367 | | PDAF n_modeltasks: Number of parallel model integration tasks |
| 368 | | PDAF >=1 for subtypes 0 and 1; not larger than total number of processors |
| 369 | | PDAF =1 required for subtypes 2 and 3 |
| 370 | | PDAF screen: Control verbosity of PDAF |
| 371 | | PDAF 0: no outputs |
| 372 | | PDAF 1: basic output (default) |
| 373 | | PDAF 2: 1 plus timing output |
| 374 | | PDAF 3: 2 plus debug output |
| 375 | | PDAF +++++++++ End of option overview for the NETF ++++++++++ |
| 376 | | }}} |
| 377 | | |
| 378 | | == LNETF (filtertype=10) == |
| 379 | | |
| 380 | | {{{ |
| 381 | | PDAF Available options for LNETF: |
| 382 | | PDAF --- Sub-types (Parameter subtype) --- |
| 383 | | PDAF 0: Standard implementation with ensemble integration |
| 384 | | PDAF --- Integer parameters (Array param_int) --- |
| 385 | | PDAF param_int(1): Dimension of state vector (>0), required |
| 386 | | PDAF param_int(2): Ensemble size (>0), required |
| 387 | | PDAF param_int(3): Size of smoothing lag (>=0), optional |
| 388 | | PDAF 0: no smoothing (default) |
| 389 | | PDAF >0: apply smoother up to specified lag |
| 390 | | PDAF param_int(4): Type of ensemble perturbations, optional |
| 391 | | PDAF 0: no perturbations (default) |
| 392 | | PDAF 1: constant standard deviation |
| 393 | | PDAF 2: relative to ensemble standard deviation |
| 394 | | PDAF param_int(5): Type of forgetting factor; optional |
| 395 | | PDAF 0: forgetting factor on forecast ensemble (default) |
| 396 | | PDAF 1: forgetting factor on forecast ensemble only observed domains |
| 397 | | PDAF 2: forgetting factor on analysis ensemble |
| 398 | | PDAF 3: forgetting factor on analysis ensemble only observed domains |
| 399 | | PDAF param_int(6): Type of ensemble transformation matrix; optional |
| 400 | | PDAF 0: random orthonormal matrix orthogonal to (1,...,1)^T (default) |
| 401 | | PDAF 1: deterministic transformation |
| 402 | | PDAF param_int(7): Type of weights inflation; optional |
| 403 | | PDAF 0: no weights inflation (default) |
| 404 | | PDAF 1: inflate so that N_eff/N > param_real(2) |
| 405 | | PDAF --- Floating point parameters (Array param_real) --- |
| 406 | | PDAF param_real(1): Forgetting factor (usually >0 and <=1), required |
| 407 | | PDAF param_real(2): Limit for weigts inflation N_eff/N > param_real(2), optional, default=0.0 |
| 408 | | PDAF param_real(3): Ensemble perturbation level (>0), required, only used if param_int(4)>0 |
| 409 | | PDAF --- Further parameters --- |
| 410 | | PDAF n_modeltasks: Number of parallel model integration tasks |
| 411 | | PDAF >=1 for subtypes 0 and 1; not larger than total number of processors |
| 412 | | PDAF =1 required for subtypes 2 and 3 |
| | 657 | PDAF --- Integer parameters (Array param_int) --- |
| | 658 | PDAF param_int(1): dim_p |
| | 659 | PDAF Dimension of state vector (>0), required |
| | 660 | PDAF param_int(2): dim_ens |
| | 661 | PDAF Ensemble size (>0), required |
| | 662 | PDAF param_int(3): dim_lag |
| | 663 | PDAF Size of smoothing lag (>=0), optional |
| | 664 | PDAF 0: no smoothing (default) |
| | 665 | PDAF >0: apply smoother up to specified lag |
| | 666 | PDAF param_int(4): type_noise |
| | 667 | PDAF Type of ensemble perturbations, optional |
| | 668 | PDAF 0: no perturbations (default) |
| | 669 | PDAF 1: constant standard deviation |
| | 670 | PDAF 2: relative to ensemble standard deviation |
| | 671 | PDAF param_int(5) type_forget |
| | 672 | PDAF Type of forgetting factor; optional |
| | 673 | PDAF 0: forgetting factor on forecast ensemble (default) |
| | 674 | PDAF 1: forgetting factor on forecast ensemble only observed domains |
| | 675 | PDAF 2: forgetting factor on analysis ensemble |
| | 676 | PDAF 3: forgetting factor on analysis ensemble only observed domains |
| | 677 | PDAF param_int(6) type_trans |
| | 678 | PDAF Type of ensemble transformation matrix; optional |
| | 679 | PDAF 0: random orthonormal matrix orthogonal to (1,...,1)^T (default) |
| | 680 | PDAF 1: deterministic transformation |
| | 681 | PDAF param_int(7): type_winf |
| | 682 | PDAF Type of weights inflation; optional |
| | 683 | PDAF 0: no weights inflation (default) |
| | 684 | PDAF 1: inflate so that N_eff/N > param_real(2) |
| | 685 | PDAF param_int(8): observe_ens |
| | 686 | PDAF Application of observation operator H, optional |
| | 687 | PDAF Note: This parameter has no influence on the LNETF assimilation result |
| | 688 | PDAF 0: Apply H to ensemble mean to compute innovation |
| | 689 | PDAF 1: Apply H to ensemble states; then compute innovation from their mean (default) |
| | 690 | PDAF param_int(8)=1 is the recomended choice for nonlinear H |
| | 691 | PDAF param_int(9): type_obs_init |
| | 692 | PDAF Initialize observations before or after call to prepoststep_pdaf |
| | 693 | PDAF 0: Initialize observations before call to prepoststep_pdaf |
| | 694 | PDAF 1: Initialize observations after call to prepoststep_pdaf (default) |
| | 695 | PDAF --- Floating point parameters (Array param_real) --- |
| | 696 | PDAF param_real(1): forget |
| | 697 | PDAF Forgetting factor (usually >0 and <=1), required |
| | 698 | PDAF param_real(2): limit_winf |
| | 699 | PDAF Limit for weigts inflation N_eff/N > param_real(2), optional, default=0.0 |
| | 700 | PDAF param_real(3): noise_amp |
| | 701 | PDAF Ensemble perturbation level (>0), required, only used if param_int(4)>0 |
| | 702 | PDAF --- Further parameters --- |
| | 703 | PDAF n_modeltasks: Number of parallel model integration tasks |
| | 704 | PDAF >=1; not larger than total number of processors |