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Overview - Lecture 4

Lars Nerger

Discuss some aspects relevant for the practical
application of ensemble data assimilation

Ensembles and how to generate them

Observation operators
Data assimilation software (PDAF)

Summary
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Ensembles
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Ensemble Covariance Matrix

= Provide uncertainty information (variances + covariances)

= Generated dynamically
by propagating ensemble of model states

SST: Ensemble standard deviation — March 1
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Effect of cross-correlations — multivariate increments

= Also:
Provide information on error correlations
(between different locations and different fields)

= Example: Assimilation of sea surface height
(Brankart et al., Mon. Wea. Rev. 137 (2009) 1908-1927)

Assimilation increment in sea Induced change
surface height in zonal velocity
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Ensemble Simulations

» Run model with different forcings, parameters, initial condition
(or even run different models)

 Ensembles spread provides uncertainty information
« Can derive probabilities from ensemble distribution

Ensemble of hurricane tracks Hurricane strike probabilities
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Source: Bourgeault et al. BAMS 91 (2010) 1059
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The Ensemble

= The ensemble

o (D) (N)
= Aset of N model state realizations: X; *,...,X;

= Ensemble matrix X; = (x,gl), - ,x(-N))

(/

Ensemble represents state estimate and its uncertainty

Xzzfz‘l'X; with X;ZXZ—XZ

( Each column of X; holds the ensemble mean)

Need to initialize 2 parts:
. K,,, ensemble mean — or central state State estimate

= X! ensemble perturbations Uncertainty estimate

Important: States in X ; need to be realistic realizations
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The Initial Ensemble — Central State

Initial ensemble X represents uncertainty and state at initial time

Initial central state Xy
=  Will be the initial ensemble mean state
= Choose it freely as your best estimate

= E.g. from operational model run

With regard do data assimilation
= A‘good’ state is difficult to improve, but it’s realistic

= A‘bad’ state is easy to improve, but the result might still have high error
(DA studies in the past sometimes used a long time mean)

= Generally: Improving the state estimate is not a success on its own
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The Initial Ensemble — Ensemble Perturbations

Lars Nerger

Ensemble perturbation X6 represent uncertainty (error) in state

Sample covariance matrix

1 — __

= variance: uncertainty of each value

)

= covariances: relation of errors of different variables
or at different grid points

We intent to obtain X6 from model dynamics

From the ensemble we can
compute any of the
components of P:

variances: P;;,1 =7
covariances: P;;, 1 # j

correlations:
v PiiPjj

= unlike parameterized covariances in 3D-Var

= Provide uncertainty and error covariance at analysis time
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The Initial Ensemble — Sampling possibilities (l)

Possibility 1: Sample directly from model trajectory

= select model states from a simulation;:

= Choose model states systematically
(e.g. January 1 from various years)

= Choose model states randomly
(e.g. randomly from December to February from some year)

Advantages

= Each state is physically balanced

= Cross-covariances between different fields from model dynamics
Disadvantages

= Difficult to represent the uncertainty

= Slow convergence

= Replacing sample mean by central state can lead to unbalanced states
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The Initial Ensemble — Sampling possibilities (2)

Lars Nerger

Possibility 2: Generate perturbations dynamically

1. Perturb initial state 5&(()%) = X + 5x(()7')

Do a short model run (few days) with original initialization

(@) _ (@) _

Perturbation 7 is given by difference X, ° = X

2

3. Do a short model run (few days) with perturbed initialization
4 Xk
5

Repeat to obtain N perturbations

Different schemes have been proposed on this basis, e.g.
= NMC method (Parrish & Derber, 1992)

= Short-term forecasts
= Bred vectors (Toth & Kalnay, 1993)

= Sequence of short forecasts with rescaling of perturbations
(,breeding’ of perturbations; finite-time Lyaponov exponents)
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The Initial Ensemble — Sampling possibilities (3)

Lars Nerger

Possibility 3: Use model state variability

Second-order exact sampling from EOFs

1.

o & O N

Our standard
method in PDAF

Perform a model run over sufficient time period (or use one at hand),

store snapshots of model states Z = Z1,...,Z)

Subtract a suitable mean Z' =7 — Z

PerformanSvD Z' = UAVT U holds the EOFs

Specify ensemble size N (< M+1)

Generate a random matrix {2 of size N x N-1 whose columns are

orthonormal and orthogonal to the vector (1, ... 1)T

With the first N-7 columns of U compute

X' =N —-—1UAQT
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(2 can be obtained iteratively
with orthogonal projections
(Hausholder reflections;
we have code for this)
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The Initial Ensemble — Sampling possibilities (4)

Advantages of second-order exact sampling

= The method explicitly computes a square root of the covariance matrix
(Gaussian assumption)

= EOFs U are eigenvectors of model operator

= Important are eigenvectors with eigenvalue > 1
these are unstable directions of the dynamics

= One can precompute the EOFs to be able to generate ensembles up to
size M+1 later

= EOFs yield best low-rank approximation for P

Disadvantage
= Perturbations do not account for physical balances
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Sampling Example

Example matrix and state

Lars Nerger

30 1.0 00
0.0
P=|10 30 00} x,=
0.0
00 00 001

Minimum 2nd order exact sampling

2nd order exact sampling

= rank 2 matrix is exactly sampled
using 3 state realizations

) | I
W N - (=] — N w &

ensemble states
— True prob. ellipsoid
--- sampled ellipse
L J

1A
F=y

Same as spherical simplex sampling (Wang et al., 2004)

Data Assimilation: Practical Aspects
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Some possible samplings

SEEK Monte Carlo Initialization (EnKF)
¢ ® SEEK modes ¢ « EnKF ensemble states
3 = Treeprob olipsoid | 3 ~—— samped sipsod
2 2 .
Eigenvectors , 1 Random sampling
ensemble size N=r+1; ’ : slow convergence;
not an ensemble of B ) needs large ensemble;
. - -2 .
equivalent states ? equivalent states
-3 -3
_54 -2 0 2 4 _54 -2 0 2 4
Symmetric Pairs Minimum 2nd order exact sampling (SEIK)
4 - - - 4
o o SEK e stes
. . 8 3 --- sampled ellipse
Symmetric pairs : : 2nd-order exact sampling
H — . 1 1 .
ensemble size N=2r, 0 0 ensemble size N=r+1;
not an ensemble of ) ) . convergence depends on
N . equivalent states
T4 3 2 0 1 2 3 s -2 0 2 4
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The Ensemble Size
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Which ensemble size is ,correct’

Ensemble size determines sampling quality Eigenvalues in case of
of covariance matrix NEMO double gyre

Someinsights

80

= Ensemble should cover the unstable
directions/modes or unstable subspace
of model dynamics

60

Explained variance [%]
40

= eigenvalues of EOFs can give indication

= Common argument in papers ~15-20 o
years ago: A certain ensemble size T ——
contains e.g. 90% of the variability 0 100 200 300 400 500 600 700

Number of eigenvectors
= But this says nothing about sampling
quality

= in particular of cross-covariances

= variances can be to low or too high;
covariances can have wrong sign

20
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Which ensemble size is ,correct’ (ll)

Ensemble size in practice

= Published studies use between 4 and ~200 members
(there are now also cases with ~10 000 members, but exceptions)

= Determine ensemble size experimentally:

Lars Nerger

There will be a minimum limit to overall functioning
(perhaps, never go below 8, but this is only experience
and Liang et al (2017) used N=4 for successful DA of sea ice)

Further increased size will lead to incremental improvements
(But there can be steps in the improvement if error in some
cross-covariance is significantly improved)

Variances are easy to sample; covariances more difficult;
cross-covariances between different fields even more difficult

We typically use between 20 and 50 members
(e.g. with coastal application HBM-ERGOM we saw better
subsurface updates with N=40 instead of N=20)

Data Assimilation: Practical Aspects 18



Observation operators and errors

Lars Nerger
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Observation Operator

Lars Nerger

Obervations: y € R™ (contains different observed fields)

Observation equation (relation of observation to state x):

yi = Hy [Xi| +eg €% : observation
error

Data Assimilation: Practical Aspects
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Linear Observation Operators

Linear observation operators Hx - examples:

= Model value at a grid point

= Average of model values at some grid points

= |nterpolation from model grid to observation location
= Sum (integration) of model values

Average of x, and x
X — Lo ety = ( g 1 2)

Trs3 Observation of x,
\ L4 ) Observation operator?
0.5 05 0 O
H = ( 0 0 0 1 )

Lars Nerger Data Assimilation: Practical Aspects
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Nonlinear Observation Operators

Non-linear observation operators

[ e

H — sin(z2)
\ T2 + 13 /

Now H is nonlinear operator, no matrix

= Common for atmospheric observations (radiances)
= Most operations in ocean are linear
= Nonlinear H has to be applied to state value, not increment

Nonlinearity can have implications on performance of assimilation scheme
BLUE assumes Gaussian errors =» not fulfilled with nonlinear H
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Relation of state vector and observations

Observation operator

maps from state vector to observation vector

Requirements

Lars Nerger

fields needed for H have to be stored in x
information how fields are stored in state vector
Interpolation also needs coordinate information

Data Assimilation: Practical Aspects
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Observation errors ¢,

€} contains two parts:

[ Measurement errors ][ Representation errors J

Measurement is never perfect
E.g. measure temperature

« At home with digital
thermometer

e error +/- 0.1 °C
« SST from satellite
 larger error (> +/-0.3 °C)

(satellite measures radiation)

Measurement and model do not
represent the same

» Ocean models have
resolutions between ~900m
(HBM) and ~150 km (global)

* In situ measurement is local
« Satellite has certain footprint

=> Additional error

Lars Nerger Data Assimilation: Practical Aspects
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Assimilation Software

Lars Nerger
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Computational and Practical Issues

= Running a whole model ensemble is costly

= Ensemble propagation is naturally parallel (all independent)
= Ensemble data assimilation methods need tuning

= No need to go into model numerics (just model forecasts)

= Assimilation analysis step only needs to know:

= Values of model fields and their location
= Observed values, their location and uncertainty

We need to handle large matrices and a large amount of data,
=> Require optimized and parallelized implementation

Ensemble data assimilation can be implemented

in form of a generic code

+ case-specific routines

Lars Nerger Data Assimilation: Practical Aspects
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PDAFParaIIeI

PDAF: Parallel Data Assimilation Framework Data Assimilation
A unified tool for interdisciplinary data assimilation ... [=] 3% [=]

Lars Nerge

a program library for data assimilation

provide support for parallel ensemble forecasts

provide assimilation methods — fully-implemented & parallelized
provide tools for observation handling and for diagnostics

easily useable with (probably) any numerical model
(coupled to with range of models)

run from laptops to supercomputers (Fortran, MPI & OpenMP)
Usable for real assimilation applications and to study assimilation methods
ensure separation of concerns (model — DA method — observations — covariances)

Open source: github.com/PDAF

Documentation and tutorial at

http://pdaf.awi.de

Python interface:
https://github.com/yumengch/pyPDAF

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118 27



Framework design

Lars Nerger

= Parallelization of ensemble forecast can be implemented
independently from model

= Analysis step can be implemented independently from model
(run it providing state vector and observational information)

Goals for a model-independent framework

Simplify implementation of data assimilation systems
based on existing models

Provide parallelization support for ensemble forecasts
Provide filter algorithms (fully implemented & parallelized)

Provide collection of ,fixes" for filters, which showed
good performance in studies

Data Assimilation: Practical Aspects
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Offline coupling — separate programs

Model Assimilation

program
Initialize Model
generate mesh @
Initialize fields
I
(Do i=1, nsteps) . /\ | read ensemble files |
!
l | analysisstep | 4—— generic
Model Time stepper ]
oqgel error consider BC write model
Consider forcing restart files
3
—
| Post-processing |

For each ensemble state « Read restart files (ensemble)
 Initialize from restart files « Compute analysis step
* Integrate » Write new restart files

* \Write restart files
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Online coupling - Augmenting a Model for Data Assimilation

revised parallelization enables
ensemble forecast

Data assimilation: run model with
additional options

Lars Nerger

| Initialize parallel. |

| Init_parallel_PDAF |
$

Initialize Model

+
| Init_PDAF |
.
—><Do =1, nsteps)—
v

Time stepper

!

| Assimilate_PDAF |
I

—

| Post-processing |

| Finalize_PDAF |

Data Assimilation: Practical Aspects

Model

Extension for
data assimilation:

4 subroutine calls

plus:
Possible
model-specific
adaption

e.g. in NEMO:
treat leap-frog

time stepping

30



Online and Offline modes

Lars Nerger

Offline

Separate programs for model and filter

Ensemble forecast by running sequence of
models

Analysis by assimilation program

Data exchange model-filter by files on disk

Advantage:

Rather easy implementation

(file reading/writing routines, no change to
model code)

Disadvantage:
Limited efficiency, cost of file reading &
writing; restarting programs

Online

Couple model and filter into single
executable program

Run single program for whole assimilation
task (forecasts and analysis)

Data exchange model-filter in memory

Advantage:
Computationally very efficient
(less file outputs, no full program restarts)

Disadvantage:
More implementation work, incl. extension
of model code

Data Assimilation: Practical Aspects
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2-Level Parallelism

PDAFParaIIeI

Data Assimilation
Framework

Forecast

Model
— Task 1 |

Model

Analysis Forecast

) Model
Filter | Task 1 .

v

Model

\ 4

\ 4

\ 4

- Task 2 -

Model
- Task 3 -

- Task 2 -

Model
- Task 3 -

A 4

1. Multiple concurrent model tasks

2. Each model task can be parallelized

» Analysis step is also parallelized

MPI| communicators initialized

Lars Nerger

in routine init_parallel _pdaf

Data Assimilation: Practical Aspects
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Assimilation-enabled Model

=  Modify model to simulate e
39
ensemble of model states
= Insert analysis step/solver to . (;f@v Forecast1 ¢ fa
be executed at prescribed 3 Jse 3 \
interval AP /5P
= Run model as usual, but with 2 3 antid (EnKF)
more processors and
additional options P P
é){{iﬁ; Forecast40 . g;{/
f - f«k Update fields
A for next forecast
Initialize Ensemble Analysis step in
ensemble forecast between time steps

Lars Nerger



PDAF interface structure

* |nterface routines call PDAF-core routines

* PDAF-core routines call case-specific routines
provided by user (included in model binding set)

« User-supplied call-back routines for elementary operations:
= field transformations between model and filter

= observation-related operations

User supplied routines can be implemented
as routines of the model

User routines
(call-back)

I\ )

Access information through Fortran modules

v

PDAF

v

Model

Lars Nerger Data Assimilation: Practical Aspects



Implementing Ensemble Filter Analysis Step

case-specific
call-back routines
(implement for model)

Analysis operates
on state vectors
(all fields in one vector)

Initialize obs.

information

y, R

Lars Nerger

Model interface

Ensemble of
state vectors

X

Filter analysis

update ensemble
assimilating observations

Apply observation
operator

y = H(x)

Observation module

Data Assimilation: Practical Aspects

Localization
module

Initialize

Local
observations

Yioc H (x>loc

35



pyPDAF

Python interface to PDAF
= Developed by Yumeng Chen, University of Reading, UK
= Coded using Cython

Driver and user routines coded in Python

Particularly useful if model is coded in Python

Supports online and offline coupling

Fresh development:
-» we don‘t know performance for high-dimensional cases yet
= ideal Python implementation is still in progress

pyPDAF:

https://github.com/yumengch/pyPDAF

Chen, Y., L. Nerger, and A. S. Lawless (2024) A Python interface to the Fortran-based Parallel Data
Assimilation Framework: pyPDAF v1.0.0, submitted to GMD, doi:10.5194/egusphere-2024-1078, 2024
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Summary

Lars Nerger
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Summary 1

Data Assimilation

= combines observations and dynamics models in a
quantitative way

= Allows models to learn from observations

= Can be applied whenever there is a dynamical model
and related observations

Ensemble Data Assimilation

= Utilize ensemble of model state realization to estimate
state and its uncertainty

= Estimates are dynamic (‘errors of the day’)
= Ensemble integration is costly to run

Lars Nerger Data Assimilation: Practical Aspects
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Summary 2

Lars Nerger

Mathematical basis
= estimation (probabilities and Bayes law)
or optimization (minimization)
= Kalman filters assume Gaussian error distributions
for optimality
Practical Ensemble Data Assimilation
= Use advanced ensemble Kalman filters like ESTKF
= Need to utilize fixes’ like inflation and localization
= Problem can be parallelized and can efficiently use
supercomputers
Many things we didn’t have time for ....
= Parameter estimation and observation system optimization
= Nonlinear (non-Gaussian) data assimilation
= Methods in machine learning are very related

Data Assimilation: Practical Aspects

There is
software

for applying
DA!
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