

Ensemble-Based Data Assimilation: Concepts, Methods, and Hands-On Tutorials

Lecture 4: Practical aspects

Lars Nerger

Alfred Wegener Institute
Helmholtz Center for Polar and Marine Research
Bremerhaven, Germany

Overview – Lecture 4

Discuss some aspects relevant for the practical application of ensemble data assimilation

- Ensembles and how to generate them
- Observation operators
- Data assimilation software (PDAF)
- Summary

Ensembles

Ensemble Covariance Matrix

- Provide uncertainty information (variances + covariances)
- Generated dynamically by propagating ensemble of model states

Data Assimilation: Practical Aspects

Effect of cross-correlations – multivariate increments

- Also: Provide information on error correlations (between different locations and different fields)
- Example: Assimilation of sea surface height (Brankart et al., Mon. Wea. Rev. 137 (2009) 1908-1927)

Ensemble Simulations

- Run model with different forcings, parameters, initial condition (or even run different models)
- · Ensembles spread provides uncertainty information
- Can derive probabilities from ensemble distribution

Ensemble of hurricane tracks Hurricane strike probabilities

Source: Bourgeault et al. BAMS 91 (2010) 1059

Data Assimilation: Practical Aspects

The Ensemble

- The ensemble
 - A set of N model state realizations: $\mathbf{x}_i^{(1)}, \dots, \mathbf{x}_i^{(N)}$
 - lacksquare Ensemble matrix $\mathbf{X}_i = \left(\mathbf{x}_i^{(1)}, \dots, \mathbf{x}_i^{(N)}
 ight)$

Ensemble represents state estimate and its uncertainty

$$\mathbf{X}_i = \overline{\mathbf{X}}_i + \mathbf{X}_i'$$
 with $\mathbf{X}_i' = \mathbf{X}_i - \overline{\mathbf{X}}_i$

(Each column of $\overline{\mathbf{X}}_i$ holds the ensemble mean)

Need to initialize 2 parts:

- $\overline{\mathbf{X}}_i$ ensemble mean or *central state* State estimate
- $lackbox{ iny X'_i}$ ensemble perturbations Uncertainty estimate

Important: States in \mathbf{X}_i need to be realistic realizations

The Initial Ensemble – Central State

Initial ensemble \mathbf{X}_0 represents uncertainty and state at initial time

Initial central state $\overline{\mathbf{x}}_0$

- Will be the initial ensemble mean state
- Choose it freely as your best estimate
 - E.g. from operational model run

With regard do data assimilation

- A 'good' state is difficult to improve, but it's realistic
- A 'bad' state is easy to improve, but the result might still have high error (DA studies in the past sometimes used a long time mean)
- Generally: Improving the state estimate is not a success on its own

The Initial Ensemble – Ensemble Perturbations

Ensemble perturbation \mathbf{X}_0' represent uncertainty (error) in state

Sample covariance matrix

$$\mathbf{P}_i = rac{1}{N-1} \left(\mathbf{X}_i - \overline{\mathbf{X}}_i
ight) \left(\mathbf{X}_i - \overline{\mathbf{X}}_i
ight)^T$$

- variance: uncertainty of each value
- covariances: relation of errors of different variables or at different grid points

We intent to obtain \mathbf{X}_0' from model dynamics

- unlike parameterized covariances in 3D-Var
- Provide uncertainty and error covariance at analysis time

From the ensemble we can compute any of the components of P:

variances: $\mathbf{P}_{ij}, i=j$

covariances: $\mathbf{P}_{ij}, i \neq j$

correlations: $\frac{\mathbf{P}_{ij}}{\sqrt{\mathbf{P}_{ii}\mathbf{P}_{jj}}}$

The Initial Ensemble – Sampling possibilities (I)

Possibility 1: Sample directly from model trajectory

- select model states from a simulation:
 - Choose model states systematically (e.g. January 1 from various years)
 - Choose model states randomly (e.g. randomly from December to February from some year)

Advantages

- Each state is physically balanced
- Cross-covariances between different fields from model dynamics

Disadvantages

- Difficult to represent the uncertainty
- Slow convergence
- Replacing sample mean by central state can lead to unbalanced states

The Initial Ensemble – Sampling possibilities (2)

Possibility 2: Generate perturbations dynamically

- 1. Perturb initial state $ilde{\mathbf{x}}_0^{(i)} = \mathbf{x}_0 + \delta \mathbf{x}_0^{(i)}$
- 2. Do a short model run (few days) with original initialization
- 3. Do a short model run (few days) with perturbed initialization
- 4. Perturbation i is given by difference $\mathbf{x}_k'^{(i)} = ilde{\mathbf{x}}_k^{(i)} \mathbf{x}_k$
- 5. Repeat to obtain N perturbations

Different schemes have been proposed on this basis, e.g.

- NMC method (Parrish & Derber, 1992)
 - Short-term forecasts
- Bred vectors (Toth & Kalnay, 1993)
 - Sequence of short forecasts with rescaling of perturbations (,breeding' of perturbations; finite-time Lyaponov exponents)

The Initial Ensemble – Sampling possibilities (3)

Possibility 3: Use model state variability

Our standard method in PDAF

Second-order exact sampling from EOFs

- 1. Perform a model run over sufficient time period (or use one at hand), store snapshots of model states $\mathbf{Z} = \mathbf{z}_1, \dots, \mathbf{z}_M$
- 2. Subtract a suitable mean $\mathbf{Z}' = \mathbf{Z} \overline{\mathbf{Z}}$
- 3. Perform an SVD $\mathbf{Z}' = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T$

U holds the EOFs

- 4. Specify ensemble size *N* (≤ *M*+1)
- 5. Generate a random matrix Ω of size $N \times N-1$ whose columns are orthonormal and orthogonal to the vector $(1, ... 1)^T$ Ω can be obtained as
- 6. With the first *N-1* columns of \mathbf{U} compute

$$\mathbf{X}' = \sqrt{N-1} \mathbf{U} \mathbf{\Lambda} \mathbf{\Omega}^T$$

Ω can be obtained iteratively with orthogonal projections (Hausholder reflections; we have code for this)

The Initial Ensemble – Sampling possibilities (4)

Advantages of second-order exact sampling

- The method explicitly computes a square root of the covariance matrix (Gaussian assumption)
- EOFs U are eigenvectors of model operator
 - → Important are eigenvectors with eigenvalue > 1 these are unstable directions of the dynamics
- One can precompute the EOFs to be able to generate ensembles up to size M+1 later
- ullet EOFs yield best low-rank approximation for ${f P}$

Disadvantage

Perturbations do not account for physical balances

Sampling Example

Example matrix and state

$$\mathbf{P}_{t} = \begin{pmatrix} 3.0 & 1.0 & 0.0 \\ 1.0 & 3.0 & 0.0 \\ 0.0 & 0.0 & 0.01 \end{pmatrix}; \ \mathbf{x}_{t} = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$$

2nd order exact sampling

→ rank 2 matrix is exactly sampled using 3 state realizations

Same as spherical simplex sampling (Wang et al., 2004)

Some possible samplings

Eigenvectors

ensemble size N=r+1; not an ensemble of equivalent states

Symmetric pairs
ensemble size N=2r;
not an ensemble of
equivalent states

Random sampling

slow convergence; needs large ensemble; equivalent states

2nd-order exact sampling

ensemble size N=r+1; convergence depends on eigenvalues; equivalent states

The Ensemble Size

Which ensemble size is ,correct'

Ensemble size determines sampling quality of covariance matrix

Some insights

- Ensemble should cover the unstable directions/modes or unstable subspace of model dynamics
- eigenvalues of EOFs can give indication
 - Common argument in papers ~15-20 years ago: A certain ensemble size contains e.g. 90% of the variability
 - But this says nothing about sampling quality
 - in particular of cross-covariances
 - variances can be to low or too high; covariances can have wrong sign

Lars Nerger

Which ensemble size is ,correct' (II)

Ensemble size in practice

- Published studies use between 4 and ~200 members (there are now also cases with ~10 000 members, but exceptions)
- Determine ensemble size experimentally:
 - There will be a minimum limit to overall functioning (perhaps, never go below 8, but this is only experience and Liang et al (2017) used N=4 for successful DA of sea ice)
 - Further increased size will lead to incremental improvements (But there can be steps in the improvement if error in some cross-covariance is significantly improved)
 - Variances are easy to sample; covariances more difficult;
 cross-covariances between different fields even more difficult
 - We typically use between 20 and 50 members
 (e.g. with coastal application HBM-ERGOM we saw better subsurface updates with N=40 instead of N=20)

Observation operators and errors

Observation Operator

Obervations: $\mathbf{y} \in \mathbb{R}^m$ (contains different observed fields)

Observation equation (relation of observation to state x):

$$\mathbf{y}_k = H_k \left[\mathbf{x}_k
ight] + \epsilon_k$$
 ϵ_k : observation error

Linear Observation Operators

Linear observation operators $\mathbf{H}\mathbf{x}$ – examples:

- Model value at a grid point
- Average of model values at some grid points
- Interpolation from model grid to observation location
- Sum (integration) of model values

$$\mathbf{x}=egin{pmatrix} x_1\ x_2\ x_3\ x_4 \end{pmatrix}$$
 Let $\mathbf{y}=egin{pmatrix} ext{Average of x_1 and x_2} \ ext{Observation operator?} \end{pmatrix}$

$$\mathbf{H} = \left(\begin{array}{cccc} 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

Nonlinear Observation Operators

Non-linear observation operators

$$H=\left(egin{array}{c} x_1^2 \ \sin(x_2) \ \sqrt{x_3^2+x_4^2} \end{array}
ight)$$

Now *H* is nonlinear operator, no matrix

- Common for atmospheric observations (radiances)
- Most operations in ocean are linear
- Nonlinear H has to be applied to state value, not increment

Nonlinearity can have implications on performance of assimilation scheme BLUE assumes Gaussian errors → not fulfilled with nonlinear *H*

Relation of state vector and observations

Observation operator

maps from state vector to observation vector

Requirements

- fields needed for H have to be stored in x
- information how fields are stored in state vector.
- Interpolation also needs coordinate information

Observation errors ϵ_k

ϵ_k contains two parts:

Measurement errors

Measurement is never perfect

E.g. measure temperature

- At home with digital thermometer
 - error +/- 0.1 °C
- SST from satellite
 - larger error (> +/-0.3 °C)

(satellite measures radiation)

Representation errors

Measurement and model do not represent the same

- Ocean models have resolutions between ~900m (HBM) and ~150 km (global)
- In situ measurement is local
- Satellite has certain footprint
- → Additional error

Assimilation Software

Computational and Practical Issues

- Running a whole model ensemble is costly
- Ensemble propagation is naturally parallel (all independent)
- Ensemble data assimilation methods need tuning
- No need to go into model numerics (just model forecasts)
- Assimilation analysis step only needs to know:
 - Values of model fields and their location.
 - Observed values, their location and uncertainty
- We need to handle large matrices and a large amount of data,
 - → Require optimized and parallelized implementation

Ensemble data assimilation can be implemented in form of a generic code

+ case-specific routines

PDAF: Parallel Data Assimilation Framework

A unified tool for interdisciplinary data assimilation ...

- a program library for data assimilation
- provide support for parallel ensemble forecasts
- provide assimilation methods fully-implemented & parallelized
- provide tools for observation handling and for diagnostics
- easily useable with (probably) any numerical model (coupled to with range of models)
- run from laptops to supercomputers (Fortran, MPI & OpenMP)
- Usable for real assimilation applications and to study assimilation methods
- ensure separation of concerns (model DA method observations covariances)

Open source: Documentation and tutorial at

http://pdaf.awi.de

github.com/PDAF

Python interface: https://github.com/yumengch/pyPDAF

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118

Framework design

- Parallelization of ensemble forecast can be implemented independently from model
- Analysis step can be implemented independently from model (run it providing state vector and observational information)

Goals for a model-independent framework

- Simplify implementation of data assimilation systems based on existing models
- Provide parallelization support for ensemble forecasts
- Provide filter algorithms (fully implemented & parallelized)
- Provide collection of "fixes" for filters, which showed good performance in studies

Offline coupling – separate programs

For each ensemble state

- Initialize from restart files
- Integrate
- Write restart files

- Read restart files (ensemble)
- Compute analysis step
- Write new restart files

Online coupling - Augmenting a Model for Data Assimilation

revised parallelization enables ensemble forecast

Data assimilation: run model with additional options

Model

Extension for data assimilation:

4 subroutine calls

plus:
Possible
model-specific
adaption

e.g. in NEMO: treat leap-frog time stepping

Online and Offline modes

Offline

- Separate programs for model and filter
- Ensemble forecast by running sequence of models
- Analysis by assimilation program
- Data exchange model-filter by files on disk
- Advantage:
 Rather easy implementation
 (file reading/writing routines, no change to model code)
- Disadvantage:
 Limited efficiency, cost of file reading & writing; restarting programs

Online

- Couple model and filter into single executable program
- Run single program for whole assimilation task (forecasts and analysis)
- Data exchange model-filter in memory

- Advantage:
 Computationally very efficient
 (less file outputs, no full program restarts)
- Disadvantage:
 More implementation work, incl. extension of model code

2-Level Parallelism

- 1. Multiple concurrent model tasks
- 2. Each model task can be parallelized
- Analysis step is also parallelized

MPI communicators initialized in routine init_parallel_pdaf

Assimilation-enabled Model

Couple a model with PDAF

- Modify model to simulate ensemble of model states
- Insert analysis step/solver to be executed at prescribed interval
- Run model as usual, but with more processors and additional options

Lars Nerger 33

PDAF interface structure

- Interface routines call PDAF-core routines
- PDAF-core routines call case-specific routines provided by user (included in model binding set)
- User-supplied call-back routines for elementary operations:
 - field transformations between model and filter
 - observation-related operations
- User supplied routines can be implemented as routines of the model

Implementing Ensemble Filter Analysis Step

pyPDAF

- Python interface to PDAF
 - Developed by Yumeng Chen, University of Reading, UK
 - Coded using Cython
- Driver and user routines coded in Python
- Particularly useful if model is coded in Python
- Supports online and offline coupling

Fresh development:

- → we don't know performance for high-dimensional cases yet
- → ideal Python implementation is still in progress

pyPDAF:

https://github.com/yumengch/pyPDAF

Chen, Y., L. Nerger, and A. S. Lawless (2024) A Python interface to the Fortran-based Parallel Data Assimilation Framework: pyPDAF v1.0.0, submitted to GMD, doi:10.5194/egusphere-2024-1078, 2024

Summary

Summary 1

Data Assimilation

- combines observations and dynamics models in a quantitative way
- Allows models to learn from observations
- Can be applied whenever there is a dynamical model and related observations

Ensemble Data Assimilation

- Utilize ensemble of model state realization to estimate state and its uncertainty
- Estimates are dynamic ('errors of the day')
- Ensemble integration is costly to run

Summary 2

Mathematical basis

- estimation (probabilities and Bayes law) or optimization (minimization)
- Kalman filters assume Gaussian error distributions for optimality

Practical Ensemble Data Assimilation

- Use advanced ensemble Kalman filters like ESTKF
- Need to utilize 'fixes' like inflation and localization
- Problem can be parallelized and can efficiently use supercomputers

Many things we didn't have time for

- Parameter estimation and observation system optimization
- Nonlinear (non-Gaussian) data assimilation
- Methods in machine learning are very related

There is software for applying DA!

Literature

Books:

- Evensen, G., F. Vossepoel, P. J. van Leeuwen, Data Assimilation Fundamentals, Springer, 2022 (online open access)
- Asch, M, M. Bocquet, M. Nodet, Data Assimilation: Methods, Algorithms, and Applications, SIAM, 2017 (not too mathematical)
- Reich, S. and C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press, 2015 (mathematical)

Journal Articles:

- S. Vetra-Carvalho et al. (2018). State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems.
 Tellus A 70:1(2018) 1445364 (good reference for algorithms)
- Carrassi, A., M. Bocquet, L. Bertino, G. Evensen (2018). Data assimilation in the geosciences: An overview of methods, issues, and perspectives, WIREs Climate Change. 2018;9:e535