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Overview

Overall aim of the workshop: Get familiar with concepts of data
assimilation and selected methods for high-dimensional models

Yesterday
1. Data Assimilation Basics
2. Ensemble Data Assimilation

Today
3. Advanced Ensemble Kalman filters
* hands-on tutorial
* break at ~10:30h
* hands-on tutorial
4. Practical aspects
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Overview - Lecture 3

Discuss advanced filter variants suitable for large-scale
data assimilation + ‘fixes’ needed to make them usable

= Ensemble transform Kalman filter - ETKF

= |nflation

= | ocalization
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Ensemble Transform Kalman Filter

(one of the current efficient ‘work horses’)
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Square-roots

Forecast ensemble covariance matrix:

1 / /
f_ f I\T
Analysis ensemble covariance matrix:
1 / /
a __ f FN\T
Py = v 1% AXy) What is A ?

with symmetric matrix A

Analysis ensemble perturbations then given by
X¢' = XJ A1/
kK — “*k

Square-root is computed by eigenvalue decomposition (EVD)

A =VSVT s A2 — yv81/2yT «— symmetric

square root
V: eigenvectors; S: diagonal matrix of eigenvalues
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Ensemble transformations (2)

Possibilities to obtain XZ

1. Monte Carlo analysis update

« Kalman update of each single ensemble member

2. Explicit ensemble transformation

1. Kalman update of ensemble mean state

, J—
2. Transformation of ensemble perturbations X = X — X

a. Right sided: X =XTw small matrix W (size N x )

b. Leftsided: X ¢ = WX ' large matrix W(size n X n)
(needs tricks to be usable)
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Right sided ensemble transformation

Xe=XTWwW

Very common - used in:

« SEIK (Singular Evolutive Interpolated KF, Pham et al. 1998)
« ETKF (Ensemble Transform KF, Bishop et al. 2001)
 EnsRF (Ensemble Square-root Filter, Whitaker/Hamill 2001)
« ESTKF (Error-subspace Transform KF, Nerger et al 2012)

Very efficient: W is small (N X N)
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Efficient use of ensembles

The original EnKF is simple, but not efficient because of this:

P£ can be approximated by ensemble or modes: P£

Analysis at time t,:
Xy = xi + K. (yk - Hkxi)
Kalman gain
e o/ 7T o f 1T 1
Ky, = P{H] (H,P{H] + R;)
Costly inversion: 1M X ™M matrix!

= Degrees of freedom given by ensemble size, not number of observations!

- Ensembles allow for cost reduction — if R is invertible at low cost
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Efficient use of ensembles

~ / /
P£ can be approximated by ensemble or modes: P£ = (N — 1)_1X X T

Analysis at time t:

Xy = x{: + K (yk — Hkx}:)

Kalman gain

~ ~ ~ —1
Ky, = P{H] (H,P{H] + R;)

1
Costly inversion: 1 X 1 matrix!

Alternative (using Sherman-Morrison-Woodbury identity)

~ / / / —1 /
K, =X [(N _1)I+XTHTR'HX ] X THTR !

||
Inversion of N X /N matrix

/ —
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From previous lecture: BLUE in Vector Form — Error of State Estimate

Analysis state

x¢ =x+ (B! +HTR'H)"'HTR (y — HxY)

Equivalent (using Sherman-Morrison-Woodbury identity)
x® = x* + BH'(HBH? + R)"}(y — Hx")
Now define the gain matrix as

—1
K = BH” (HBHT + R) thus  x% = x° + K(y — Hx?)

— PaHTR—l

Analysis error

P'=(I-KH)B = (B '+H'R'H)

zx’[

Lars Nerger

/ / —1 /
(N—1)1+XTHTR_1HXJ X'T

A'—l
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= x’+P*H'R(y — Hx")

This alternative form
can be useful when we
factorize B=LLT
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Ensemble Transform Kalman Filter - ETKF

Ensemble perturbation matrix (computed explicitly)
X, =X} — Xj

Analysis covariance matrix (we use it, but don’t compute it)

P = X7AX'NHT
“Transform matrix” (in ensemble space)

A= (N-DI+ HXNHNTR'HX/

Ensemble transformation

X’a — X’f WFJ’T'KF‘.
Ensemble weight matrix

WETKF ._ mAl/z

. UseEVD A~ =UxU?T S AYZ_-_yuyx-1/2yT
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ETKF (2) — Updating the ensemble mean

Lars Nerger

Kalman gain (at time &, X' = X/ — Xf)
K=X [(N-1)I+X7HTR'HX']  X7HTR"
| J |

1

J

\ Y )
T Z 'Z
State (ensemble mean) update
x* =x/ + X’'AX"H'"R™! (y — Hx/)
\ )

I

Z

Need to invert A ~*
> reuse eigenvalue decompositon: A = UX~1UT

For efficiency: reuse Z = X’ THTR 1 already computed for A !

Full state update ,
x? =x/ + X'w
w=Ux"'U"Z (y - Hx/)

Data Assimilation: Advanced Ensemble Kalman Filters
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The ETKF

Lars Nerger

Initialization: Generate ensemble representing
the initial state estimate and initial state error
covariance matrix.

A

| Forecast: Evolve each of the ensemble members with

the full non-linear stochastic model.

Analysis: Apply KF update step to ensemble mean
and transform the ensemble perturbations iaccording
to square-root formulation in ensemble space.

The ETKF with localization (LETKF, Hunt et al. 2007) seems
to be the currently most widely used EnKF variant

Data Assimilation: Advanced Ensemble Kalman Filters
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Properties of the ETKF

= Computational complexity

* linear in dimension n of state vector (Important since n is huge!)
* approx. linear in dimension m of observation vector (m is still large!)
* cubic with ensemble size N (N is usually the smallest dimension)

= Low complexity due to explicit consideration of
ensemble spanned space (error subspace):
= Degrees of freedom given by ensemble size—1

= Analysis increment: combination of ensemble members
with weight computed in error subspace

= Compared to EnKF
* no sampling noise from observation ensemble
» Cheaper inversion of small matrix (N x N for ETKF)
* need to perform eigenvalue decomposition of small matrix
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Essential “Fixes”

Lars Nerger

Covariance Inflation

Localization

Data Assimilation: Advanced Ensemble Kalman Filters
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Limitations of pure ensemble filters

Lars Nerger

Only ensemble size O(100) is feasible to use
= Ensemble size is always much smaller than state dimension

- We always have an extreme low-rank approximation of P

This leads to

sampling errors in P*
= underestimation of variances in Pf
= inefficient analysis step

= regional error increases due to analysis step

= strong underestimation of variances in P2

Data Assimilation: Advanced Ensemble Kalman Filters
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Covariance Inflation

Lars Nerger
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Filter Divergence

= Ensemble spread estimates the assimilation error

= Converged filter: true error and estimate error are similar

= Filter divergence: large true error, but small ensemble spread
= Filter is off-track, but fails to notice this

=» can be caused by insufficient ensemble variance

Filter divergence

—estimated error
- |—true error b 1k

Converged filter

1.2

T
——estimated error
—true error

0.8f

0.6

0.4} i
Example from i ]
Lorenz-96 model 1 ] 0.2
. — 1 0 N , . )

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
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Lorenz-96 Model (Lorenz, 1996)

Lars Nerger

non-dimensional set of equations with period boundary condition
din
dt

g =1,...,J isthe grid point index

= (Tj41 —Tj—2)rj1 —z; + F

Typical configuration
= J=40, F=8 =¥ In this case, the model is chaotic

Time stepper: Runge-Kutta 4t order, dt=0.05

Lorenz96 model true state at time 200 (time step 4000)

1-dimensional
chaotic wave

1 1 L 1 1 1 -
0 5 10 15 20 25 30 35 40

Data Assimilation: Advanced Ensemble Kalman Filters
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Lorenz-96 Model (Lorenz, 1996) (ll)

= Dynamics of Lorenz-96 model

= ~8 waves fit into domain

= Drift westward (toward domain index 0)
= Intended to represent Rossby waves
= Detailed behavior is chaotic

125

H 10.0

75

5.0

25

grid point

0.0

-2.5

-5.0

-1.5

0 100 200 300 400 500
time

Figure: M. Bocquet, Lecture notes
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Excursion: Twin experiments

Real assimilation cases:
= We don’t know the true system state
= QObservation errors are not exactly known
= Observations and model can have biases (systematic errors)

Idealize for data assimilation — twin experiments:
= Generate synthetic observations from model run

= Use model state and add prescribed error
(e.g. Gaussian with prescribed variance)

= Then perform data assimilation; choose initial state which
deviate from model run used to generate observations
OSSEs - Observation system simulation experiments
= Synthetic observations simulate real ones

= Can systematically deteriorate the system
(e.g. using different model resolutions, observation bias)

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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Covariance inflation

= True variance is always underestimated
= finite ensemble size
= sampling errors (unknown structure of P)
= model errors

= can lead to filter divergence

= Simple remedy

= Increase error estimate before analysis
= Possibilities

= |ncrease ensemble spread (“inflation”)

= Multiply covariance matrix by a factor slightly above 1

= Additive error term (e.g. on diagonal)

(Mathematically, this is a regularization)

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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Multiplicative inflation and forgetting factor

Multiplicate ensemble inflation

X =X+ aX-X)

(applied to large n X N matrix)

Computationally more efficient in ETKF and ESTKF: Forgetting factor
Al:= p(N-1DI+HXHTRHX'/
(applied to small N x N matrix)

1

Relation: p=—%
a2

Using p inflates with constant factor over full state vector

Using o might allow applying varying factors

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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Impact of inflation on stability & performance

Experiments with Lorenz96 model
SEIK (like ETKF)

No inflation

Ao

o
©
@
cooo

0.3
0.25
0.24
0.23
0.22
0.21
0.205
0.2
0.195
0.19
0.185

0.18
Strong 0.9 0.175

inflation 10 20 30 a0 OV
ensemble size

o
©
o

o
©
e

forgetting factor

v

o
©
N

» white: filter fails (,diverges®)

* increased stability with stronger inflation (smaller forgetting factor)

 optimal choice for inflation factor
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Localization

Lars Nerger
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Localization: Why and how?

= Combination of observations and
model state based on estimated
error covariance matrices

= Finite ensemble size leads to
significant sampling errors

= particularly for zero or small covariances!

= Remove estimated long-range correlations

=» Increases degrees of freedom for analysis
(globally not locally!)

-» Increases size of analysis correction

(introduced for EnKFs by Houtekamer & Mitchell 1998)

Lars Nerger
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Example: Sampling error and localization

—true

- --sampled |/
- - -localized

10

distance

10

20
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Localization Types

Analysis equation:

P/HT
x® =x/ + (y—fo)

HP/HT + R
Covariance localization Observation localization
= Modify covariances in forecast = Modify observation error
covariance matrix Pf covariance matrix R
= Element-wise product with = Needs distance of observation
correlation matrix of compact (achieved by local analysis or
support domain localization)
Requires that Pfis computed Possible in all filter formulations;
(OK in EnKF, but not in ETKF) common choice in ETKF, ESTKF

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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Covariance Localization (localize P)

Lars Nerger

Apply localization to state error covariance matrix P

= Generate localization weight matrix C
using covariance functions (e.g. Normal function)

=  Apply with element-wise product
f)loc =Co P

Practical approach without computing P

= Apply C to observed matrices:

(HPHT),,. = HCHT o HPH”
(PHT);,. = CHT o PH”

Here HCH” and CHY are usually implemented as operators, not full matrices

Data Assimilation: Advanced Ensemble Kalman Filters
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Observation Localization

Lars Nerger

Local Analysis:

= Update small regions
(like single vertical columns)
allows to define distance

= This needs a loop over
local analysis domains

= Use only observation within some
distance around this region

= State update and ensemble
transformation fully local

D ,// \\
/b lz N
/ Si- hl . -->\
\ /
N 4
\\ //

S: Analysis region
D: Corresponding data region

Data Assimilation: Advanced Ensemble Kalman Filters
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Observation localization

Localizing Welght ) Distance-weight of Observations

0.9¢

= use local analysis
(allows to define distance)

0.8f
0.7}
= reduce weight for remote 0.6}
observations by increasing

variance estimates

0.5}¢

weight factor

°
IS

0.3t

= use e.g. exponential decrease 0.2}
or polynomial representing 0.1}
correlation function of compact o s
Support distance [grid points]

= |In ETKF/ESTKF we apply the localization weight as
oc = CoR™!
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Impact of inflation and localization

Experiments with Lorenz96 model

Global SEIK filter Localized, ensemble size 10

1 1

1 0.8 1 0.8

0.6 0.6

0.5 0.5

0.98 0.4 0.98 0.4

= 0.3 . 0.3
2 0.25 S 0.25
8 0.96 924 S o9 0245
2 0.22 2 0.235
= 0.21 £ 0.23
GE)’ 0.94 0.205 'é)’ 0.94 0.225
S 0.2 5 0.22
0.195 = 0.215

0.92 0.19 0.92 \ 0.21
0.185 0.205
0.18 0.2
0.9 0.175 0.9 0.195
0.17 0.19
10 20 30 40 2 6 10 14 18 22 26 30 34
ensemble size support radius

= smaller ensemble usable with localization

= optimal combination of forgetting factor and support radius exists

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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Optimal localization radius

Lars Nerger

= Localization radius is typically chosen by

= experience

= testing different radii

= Possible factors influencing the localization radius
= ensemble size
= model dynamics

= observation correlations

Data Assimilation: Advanced Ensemble Kalman Filters
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Effect of localization in real model case

Lars Nerger

Data Assimilation: Advanced Ensemble Kalman Filters
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FEOM - Coarse mesh for North Atlantic

finite-element discretization

surface nodes: 16000
3D nodes: 220000
z-levels: 23
eddy-permitting

Lars Nerger

Model applies
damping north of
Iceland
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Configuration of twin experiments

Lars Nerger

Generate true state trajectory for 12/1992 - 3/1993

Assimilate synthetic observations of sea surface height
(generated by adding uncorrelated Gaussian
noise with std. deviation 5cm to true state)

Initial Covariance matrix estimated from variability of 9-
year model trajectory (1991-1999) initialized from
climatology

Initial state estimate from perpetual 1990 model spin-up

Monthly analysis updates
(at initial time and after each month of model integration)

No model error; forgetting factor 0.8 for both filters

Nerger, L. et al., J. Mar. Syst. 65 (2007) 288-298
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Global vs. local SEIK, N=32 (March 1993)

SSH: improvement for SEIK, N=32 at 4th analysis; GLOBAL [m] SSH: improvement for LSEIK, N=32 at 4th analysis; 1=200km [m]
= 0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

-0. -0.1
-100 -80 -60 40 -20 0 - - -60

- 40
Longitude

Longitude

= Improvement is error reduction by assimilation

= Localization extents improvements into regions not
improved by global SEIK

= Regions with error increase diminished for local SEIK

= Underestimation of errors reduced by localization

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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LSEIK: True and estimated errors - third forecast

Estimated

SEIK

Strongly
underestimated
errors

Latitude

-100 -80 -60 -40 -20 0 -100 -80 -60
Longitude

SSH: estim o for LSEIK, N=32 before 4th analysis; 1=200km o [m]
0.05 80

LSEIK

0.045
0.04
rn=200km o oss
weaker . s,
underestimation £ s g
but no good "
. 0.015
representation 001
0.005
Lars Nerger I 0 g w0 a0 50

SSH: true o for LSEIK, N=32 before 4th analysis; 1=200km
L

True o
o 0.1

2 0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

-40 -20 0
Longitude

o [m]
0.1

0.09
0.08
] 0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

-40 -20 0
Longitude
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Relative RMS errors (error reduction) for SSH

Lars Nerger

SSH: relative rms error, N=8 SSH: relative rms error, N=32

<
Q0
T

S S
v w 08k 7
£ E ¥/ 5/
3 @ K
-é é S
© o Vs
e L 04|y
c'// ¥
—e—global —e—global
0.2F —8—2000km 0.2¢ —8—2000km
== 1000km == 1000km
o 500km o 500km
ol . . ——200km ol . N ——200km
1 2 3 | -2 100km 1 2 3| -2 100km
analysis number ——0km analysis number ——20km

global filter: significant improvement for larger ensemble
global filter with N=100: relative rms error 0.74

localization strongly improves estimate
- larger error-reduction at each analysis update
- but: stronger error increase during forecast

very small radius results in over-fitting to noise

=» Optimal radius > 0 km
Data Assimilation: Advanced Ensemble Kalman Filters
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Large-scale Ensemble Data Assimilation

Now we have all we need for large-scale data assimilation

In our applications we use
= ESTKF with
= Localization
= |nflation (forgetting factor)

= Parallelization (another topic...)

all coded in our data assimilation framework PDAF

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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Hands-On Tutorial 3

Lars Nerger

Ensemble Kalman Filtering with pyPDAF

Data Assimilation: Advanced Ensemble Kalman Filters
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Hands-On Tutorial 3: Ensemble KF with 2-dimensional test case

Test case:
= 2-dimensional rectangular domain
= 36 x 18 grid points (longitude x latitude)

= True state: sine wave in diagonal direction
(periodic for consistent time stepping)

= Simple time stepping:
Shift field in vertical direction one grid point per time step

= Output to text files (18 rows) — true step*.txt

True field, initial time True field, step 9 True field, step 18

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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Hands-On 3: Ensemble KF with 2-dimensional application

Lars Nerger

Observations

Add random error to true state (standard deviation 0.5)

Select a set of observations at 28 grid points

File storage (in inputs online/):
text file, full 2D field, -999 marks ‘no data’ — obs step*.txt
one file for each time step

Disturbed true state, step 10 28 Observations used for analysis, step 10

no

—

o

—_

> 3
18
15
16
1
14
o - los - !
- o
10 :
clos
8
_1 o
6
15
4 -2
-2 2
5 10 15 20 25 a0 35 @
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Part 2: Ensemble KF with 2-dimensional application

Using pyPDAF

= pyPDAF is a Python interface to PDAF
= Model and case-specific parts are coded in Python
= Actual data assimilation performed in PDAF (using the Fortran code)

Install pyPDAF
= |nstall pyPDAF from https://github.com/yumengch/pyPDAF
= following the instructions in README.md

First steps with pyPDAF:
= Download the code from https://github.com/larsnerger/pyPDAF
= The tutorial code is in tutorial/online2D

= The example has to be executed in tutorial/

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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pyPDAF: General run options

Lars Nerger

cd into tutorial/ and run the program with

mpiexec -n X python -u tutorial2D/main.py

X: ensemble size (between 2 and 9) —has to be set consistently in main.py

All other OPTIONS are specified in the Python code

Relevant OPTIONS for the assignment are inmain.py:
dim ens=4 ensemble size (between 2 and 9)

filtertype=4 select filter algorithm, e.g.

4: global filter ETKF
5: local filter LETKF

forget=1.0 select inflation (0 < forget <=1)
enstype="A’ select ensemble (A, B, C, D, E)

Note: depending on the computer used you might need to
specify —-oversubscribe with the mpiexec command
Data Assimilation: Advanced Ensemble Kalman Filters
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Options to run with local filter

Lars Nerger

In tutorial/ run the program with

mpiexec -n X python -u tutorial2D/main.py

Relevant OPTIONS related to localization are
Filtertype=5 select LETKF

cradius=5.0 set localization cut-off radius
0.0 by default, any positive value possible

locweight=2 set weight function for localization, choices:
0: constant weight of 1
1: exponential decrease
2: decrease with 5" order polynomial (Gaussian-like)

Data Assimilation: Advanced Ensemble Kalman Filters
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pyPDAF: Plotting files with Python

= Python plot scripts are in plotting/

= Plot result of forward model with Python:
python plot file.py true stepl8.txt

Plot scripts:
= plot file.py - plotthe field from a single output file of pyPDAF
python plot file.py FILENAME

= plot file input.py - plotthe field from a single file in inputs_online/
python plot file input.py FILENAME

= plot diff.py - plotthe difference of two fields (e.g. analysis and truth)

python plot diff.py FILEl FILEZ2
(the first file has to be a pyPDAF output file and the second from inputs_online/)

= plot rmse.py - plotthe rms error of the analysis over time (execute in main directory)
python plotting/plot rmse.py EXPERIMENT

Note: pyPDAF outputs with the delimiter=‘;* while the files in inputs_online/ use blank spaces
Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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Part 1: Assimilation runs with global filter

Here use the code variant in tutorial2D/ which stores outputs in sub-directories like
out N4 f1.0/ fordim ens=4 and forget=1.0

1.1 Run with the ensemble sizes 4 and 9.
Plot the analysis fields and difference of the field to the truth at times (2, 10, 18).

a) How does the difference to the true state change over time?
b) How does the RMSE change over time?

1.2 Vary the forgetting factor for dim_ens=4 in the range 0.1 to 1.0 in steps of 0.1.

Plot the RMSe as a function of the forgetting factor. (You can use the script
plotting/plot heatmap forget.py to be runin main directory)

a) How does the analysis field and its RMSE change at time steps 2 and 18
in dependence on the forgetting factor?

b) How can the dependence on ‘forget’ be explained?
(Default is forget=1.0; See information on options in pyPDAF on later slides)

Note: The python script plot_diff.py computes also the root 1 . N
mean-square error (RMSE). RMSE = n Z (field1(¢) — field2(7))

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters 48



Part 2: Assimilation runs with alternative ensemble

In this task run experiments with the second ensemble type:

- Set enstype = ‘E’

2.1 Repeat task 1.1
What results do you obtain (fields, difference to truth, RMSE)? How do they compare to the

result of task 1.17?

2.2 Repeat task 1.2
What results do you obtain (fields, difference to truth, RMSE)? How do they compare to the

result of tass 1.27?

2.3 Plot the ensemble members of the original ensemble and the alternative ensemble (in
tutorial/inputs_online/)
How can the results found in 2.1 and 2.2 be explained based on the shape of the ensemble

members?

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters 49



Part 3: Assimilation experiments with localized filter

Here use the code variantin tutorial2D/ which stores outputs in sub-directories like
out enskE N4 1lw0O r0.0/ for enstype=‘E’, locweight=0, cradius=0.0

« Set enstype=‘E’
* Use the localized filter LETKF with filtertype=5, forget=1.0, dim ens=4

* Run with the additional options
cradius (use {0.0, 1.0, 5.0, 10.0, 15,.0 20.0, 25.0, 30.0, 35.0, 40.0})
sradius = cradius
locweight (use 0 or 2)

a) How does the analysis field at times 2 and 18 change when varying
cradius for locweight=07?
b) How does the analysis field at times 2 and 18 change when varying
cradius for locweight=2? How to the results compare with those from task a?

c) For both choices of 1locweight find a choice of cradius for which the RMSE is
minimized at times 2 and 18?7 Why does this choice lead to the best result?

Note: The script plotting/plot heatmap local.py allows to get an easy overview)

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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Part 4: Assimilation runs with original ensemble

In this task run experiments with the original ensemble type
which gave the best results for the global filter:

« Set enstype=‘A’

a) For both choices of 1ocweight find a choice of cradius
for which the RMSE is minimized. How far does it differ from that in 1.1¢c?
Why does this choice might lead to be best result?

Lars Nerger Data Assimilation: Advanced Ensemble Kalman Filters
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