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Overview - Lecture 2

Introduce to sequential data assimilation and Kalman filters
from the traditional linear Kalman filter to basic ensemble-
based Kalman filters

(Extended) Kalman filter

Low-rank Kalman filters

Ensemble Kalman filters

Square-root Kalman filters

Lars Nerger Ensemble Data Assimilation



BLUE

Influence of observation error

Lars Nerger Ensemble Data Assimilation



BLUE as Statistical Estimate with Model

Lars Nerger

Best linear unbiased estimate for

Model prediction: xb — gt + €ep with: Var(eb) = 0'2
: t
Observation: Y=2 + €, with: Var(eo) — 0’3
A 1 2 2
Solution: T = o, Tp + OpY
0% + 02 (7, ¥)
2
. “ 0y
Equivalent to T=x,+ — 5 (y — zp)
oy + 07
\ J \ '- ) |\ Y )
background + gain x innovation
Equivalent to J(z) 1 (z — xp)* n 1 (z —y)?
. . . . x _— = J—
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Example: Dependence on observation error

Assume that

Ty = 1 y=0
0'b=1
Now vary O,

Notation in plots:

vary := o;
var, := o>

var, := var(x)

Lars Nerger

Analysis error as function of var,

Analysis error ‘
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Error reduced to osf
« 50% if var, = var, osh
. 91%ifvar,=10var, ¢ |
e 9% if var, = 0.1 var, _
Only depends on variances, N
not on state and observation
Varying has only an effect on DA result
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Optimal Interpolation

Error Estimates

Lars Nerger Ensemble Data Assimilation



BLUE in Vector Form — Error of State Estimate

Analysis state

x¢ =x+ (B! +HTR'H)"'HTR (y — HxY)

\

J\

|

gain matrix

Equivalent (using Sherman-Morrison-Woodbury identity)

x® = x* + BH'(HBH? + R)"}(y — Hx")

Now define the gain matrix as

innovation
vector

—1
K = BH” (HBHT + R) thus  x° =x" + K(y — Hx")
=x’+P*HTR(y — Hx")

— PaHTR—l

Analysis error

P'=(I-KH)B = (B '+H'R'H)

Lars Nerger

Ensemble Data Assimilation

This alternative form
can be useful when we
factorize B=LLT




Error Estimate in Ol

Ol needs estimate of B
= usually fixed over time
= but error is reduced in analysis: P* = (I - KH) B
=» Ol does not track development of error over time

= Ol only estimates state, but not error over time

Lars Nerger Ensemble Data Assimilation



Sequential Data Assimilation

Kalman filters

Lars Nerger Ensemble Data Assimilation



Sequential Data Assimilation

Consider some physical system (ocean, atmosphere,...)

time R Sequential assimilation: correct model state
estimate when observations are available
state (analysis); propagate estimate (forecast)

® Size of correction
determined by
model /:

s error estimates
® observation

truth ®

3D-Var is “sequential” but usually not called like it

Lars Nerger Ensemble Data Assimilation

10



Error propagation

Lars Nerger

Linear stochastic dynamical model

x; = M;_1,:Xi—1 + 1,

Assume that p(xz-_l) _— N (Xi_l,Pg’_l)

Also assume uncorrelated state errors and model errors 7};

Then
P/ =M, 1P (M;_1,:)7 + Qi

(5

With model error covariance matrix Qz‘—l

Error propagation builds the foundation of the Kalman filter

More later...

Ensemble Data Assimilation
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Propagation of covariance matrix

Forecast of error estimate — use definition of P:

k T
Pi , =cov(x;) = —— N1 Zez_ (e;_1)
with errors =% error propagation
k k - k k
e;_1 = (X_1 —Xi—1) e; =M;_1:e; 1 +1ni_1
Propagated covariance matrix (cov(n;—1) = Q;_1)
1 < 1 &
f k¢ k\T k k TaxgT .
Pi o €i (ez) — M;_1,i€_4 (ei—l) Mi—l,z’ +Qi-1
N —1 — N —1 —

(We used cov(e;_1,m,—1) =0)

We don’t have the factorization, so we directly evolve P:

P/ =M, P2, (M;_1.)7 +Qi_;

Lars Nerger Ensemble Data Assimilation
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Probabilistic view: Optimal estimation

Consider probability distribution of model and observations

Kalman Filter:
forecast Assume Gaussian distributions

---------
---------------
-
wer®
we®
wstt
"
.
o

observation

time 0 time 1 time 2

Lars Nerger Ensemble Data Assimilation
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The Kalman Filter

Assume Gaussian distributions
fully described by

» mean state estimate
* covariance matrix

= Strong simplification of estimation problem

Analysis is combination auf two Gaussian distributions
computed as
» Correction of state estimate

» Update of covariance matrix

observation

[ Analysis >

Lars Nerger Ensemble Data Assimilation
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Error assumptions

Errors: state e’

model n
observations e’

Assumptions

Errors are unbiased

E(e®) = E(e®) = E(n) = 0

Errors are Gaussian with Some errors are
known covariances independent
E (eZ(ez,)T) = kaskk’ E (eg (eZ)T) =0
E (ef(e})") =Py E (ne(el)") =0

E (mk(me)") = Qi

Filter optimality depends on these assumptions

Lars Nerger Ensemble Data Assimilation
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Kalman Filter (Kalman, 1960)

Forecast:

State propagation
x; = M;_1,:Xi—1 + 1,

Propagation of error estimate

P{ =M, 1P} (M;—1:)" + Qi1

Analysis at time t;:

State update f f
X, = x;, + Ky (yk — Hkxk)
Update of error estimate
v = (I - KyH) P,
with “Kalman gain” _1
Ky, = P{H] (H.P{H] + Ry)

Lars Nerger Ensemble Data Assimilation
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Derivation of Analysis Error

Start with analysis state
Xy = x£ + K, (yk - Hkxi)
= (I - KHy) x] + Ky

We have the errors

K=xitel  yi-xitef
with

cov(e?) =P/  cov(ef,ep) =0 cov(yx) = Ry
Hence

2 — cov(x$) = (I - KiH)PI (I - K Hy) '+ K Ry K7

—1
Using the Kalman gain K = Pin (HkP,{H{ + Rk)
We get = (I- Kka)P£

Important: This only holds for the optimal Kalman gain!

Lars Nerger Ensemble Data Assimilation




Extended Kalman Filter (E.g. Jazwinsky 1970)

Forecast:

Nonlinear state propagation
X; = M;_1,(x;—1) + €

Propagation of error estimate

P{ =M, 1P} (M;—1:)" + Qi1

Analysis at time t;:

State update f f
X, = x;, + Ky (yk — Hkxk)
Update of error estimate
v = (I - KyH) P,
with “Kalman gain” _1
Ky, = P{H] (H.P{H] + Ry)

Lars Nerger Ensemble Data Assimilation
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The KF (Kalman, 1960)

With nonlinear model: Extended Kalman filter

Initialization: Choose initial state estimate x and
corresponding covariance matrix P

Y

Forecast: Evolve state estimate with non-linear
model. Evolve columns/rows of covariance matrix
with linearized model.

\ i

|

Analysis: Combine state estimate with observations
based on weights computed from error estimates of
state estimate and observations. Update matrix P
according to relative error estimates.

Lars Nerger Ensemble Data Assimilation
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Issues of the Kalman Filter

Lars Nerger

Storage of covariance matrix unfeasible for high-
dimensional models (n? with n of O(10°-10%))

Evolving covariance matrix is extremely costly

Extended Kalman filter:
= error propagation only valid to first order
= state propagation valid to higher order
= can lead to biased estimates

Linearized evolution (like in Extended KF) can be
unstable (e.g. discussed by Evensen 1992, 1993)

- Need to
1. reduce the cost

2. improve propagation for nonlinear systems

Ensemble Data Assimilation
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Low-rank Kalman Filters

Lars Nerger

Ensemble Data Assimilation
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“Suboptimal” Filters — development of the 1990ies

Approaches to reduce the cost of the Kalman filter

= Simplified error evolution
(constant, variance only)

= Represent P by low-rank matrix

= Reduce resolution of model
(at least for the error propagation)

= Reduce model complexity

Examples:
= ,suboptimal schemes®, Todling & Cohn 1994
= Approximate KF, Fukumori & Malanotte, 1995

= RRSQRT, Verlaan & Heemink, 1995/97
= SEEK, Pham et al., 1998

Lars Nerger Ensemble Data Assimilation
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Low-rank approximation of P

Example: SEEK filter (Pham et al., 1998)

Approximate P = VZ-UZ-V;-F

(truncated eigendecomposition)

Mode matrix V; has size n X r
Forecast of » ,modes”:
Vi1 =M, 11V,

for nonlinear model
Vigr = M0 (Vi + [x7,..

Now use in analysis step:

13£ ~ VkUk_lVg

U, hassize 7 X r

HXi]) = M [x75

Lars Nerger Ensemble Data Assimilation
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The SEEK filter (Pham et al., 1998)

Initialization: Approximate covariance matrix by low-
rank matrix in the form P=VUV'. Choose state x.

Forecast: Evolve state estimate with non-linear
model. Evolve modes V of covariance matrix with
linearized model.

\

Analysis: Apply EKF update step to ensemble mean
and the ,eigenvalue matrix“ U. Covariance matrix
represented by modes and U.

Re-Initialization: Occasionally perform re-
orthogonalization of modes of covariance matrix

Lars Nerger Ensemble Data Assimilation
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SEEK's Representation of Covariance Matrix

Example matrix and state

30 1.0 00

0.0

P-[10 30 0.0;x,=( )

0.0
00 00 001

SEEK
Eigenvalues: 4  SEEK modes
4, 2, and 0.01 3 ; :'(:ngr?gdjlsipsoid

= Approximate by matrix of rank 2 1

dropping the direction of smallest o .
eigenvalue , .
Using eigenvectors and eigenvalues -3

directly is particular way to - — - :

sample the covariance matrix

Lars Nerger Ensemble Data Assimilation
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General sampling of probability distribution

Kalman filter assumes Gaussian distribution
using mean and covariance matrix

General representation:
7)

« Sample p(X) by N random state realizations x!

1 & .
p(x) = N Z 5(x — x))
j=1

0.8

ol probability

O.1 |

. ¢ ¢ e e e o o . SampleS

Lars Nerger Ensemble Data Assimilation



General sampling of probability distribution

Kalman filter assumes Gaussian distribution
using mean and covariance matrix

General representation:

« Sample p(X) by N random state realizations x!

1 & .
p(x) = N Z 5(x — x)
j=1

« State ensemble

X = [x(l),...,x(N)]

N
1 .
. % — § : (7)
Ensemble mean X = N P X

Lars Nerger Ensemble Data Assimilation
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Ensemble representation (approximation) of P

Approximate

a ~ 1 __T
P! ~ —— (Xi - Xy) (Xi - X)

( X; holds ensemble mean in each column)

Forecast of N ensemble states:
f
X +1 — = M, z+1Xz—|—1

for nonlinear model

X/

Now use in analysis step:

i+1 — e Z-I-le—I—l

Pl L (xf _ Xf) (xf _ Xf)T

N -1

Lars Nerger Ensemble Data Assimilation
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Sampling Example — Monte Carlo sampling

Example matrix and state

30 1.0 00
0.0
P=|10 30 00} x,=
0.0
00 00 001

Monte Carlo Initialization

Monte Carlo sampling of P

. ensemble states
—— True prob. ellipsoid
sampled ellipsoid

= 100 random samples
transformed by square root of P

= Estimated covariance matrix
has sampling errors

] I |
w N - (=] — N w &

bb
o
o
n

= Center of ellipse represents
state estimate x

Lars Nerger Ensemble Data Assimilation
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More on sampling

Lars Nerger

« Ensemble is not unique

« Gaussian assumption simplifies sampling
(covariance matrix & mean state)

Example: 2"-order exact sampling (Pham et al. 1998)

Use Pza ~ VZSZVZT
(truncated eigendecomposition)
Create ensemble states as

X =X ++/N —1VS/2QT

{2 is random matrix with columns orthonormal and orthogonal

to vector(1,...,1)1 . size N x (N — 1)

Ensemblesize N =7r + 1

Ensemble Data Assimilation
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Sampling Example — 2nd-order exact

Example matrix and state

30 1.0 00
0.0
P=|10 30 00} x,=
0.0
00 00 001

Minimum 2nd order exact sampling

ensemble states
— True prob. ellipsoid
--- sampled ellipse
L J

2nd order exact sampling

* rank 2 matrix is exactly sampled
using 3 state realizations

) | I
W N - (=] — N w &

1A
F=y

Same as spherical simplex sampling (Wang et al., 2004)

Lars Nerger Ensemble Data Assimilation



Error Subspace Algorithms

=> Approximate state covariance matrix by low-rank matrix

=> Keep matrix in decomposed form (XXT, VUVT)

Mathematical motivation:

P =VUV
« state error covariance matrix represents 1\4
error space at location of state estimate

» directions of different uncertainty

» consider only directions with largest
errors (error subspace)

= degrees of freedom for state correction
in analysis: rank(P)

Error space:
S = Span(V1,V2,...)

Lars Nerger Lars Nerger et al., Tellus 57A (2005) 715-735
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Ensemble-based Kalman filters

Lars Nerger

Ensemble Data Assimilation
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Ensemble Kalman Filters

First formulated by G. Evensen (EnKF, J. Geophys. Res. 1994)

Kalman filter: express probability distributions by mean
and covariance matrix

EnKF: Use ensembles to represent probability distributions

ensemble
forecast

Initial
samplin )

smoothing|
state
estimate

forecast
Note:

| transformation]
observation O
In general, the EnKF is

not an approximation time 1 time 2
Lars Nerger of the Kalman filter! Ensemble Data Assimilation

Much research
into how to

perform these
operations

Most can be

implemented in
generic form

Available in our
DA software

PDAF




Use sampled matrix P in analysis

Pi can be approximated by ensemble: P£

~ 1 —f _ T
Pl =y (X{-X5) (x{-x)

Analysis at time t,:
Xy = x£ + K (yk — Hkxi)
Kalman gain

~ ~ ~ —1
Ky, = P{H] (H.P{H] + Ry)

This only provides the analysis state estimate

=» but not the analysis ensemble

Lars Nerger Ensemble Data Assimilation
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The EnKF - Monte Carlo analysis update

Lars Nerger

Analysis step of Ensemble Kalman Filter (EnKF, Evensen 1994)

» Generate observation ensemble

vy =y 4+ €@ with [V, ..., eMeD),...,eMT =R
» Update each ensemble member

K20 — IO L g, (yg&) _ Hkxﬁ(“)

Advantage:
» Simple implementation — combined analysis and resampling
Issues:
» Generation of observation ensemble

* Introduction of sampling noise through E(])

» Costly inversion of M X 1™ matrix (~13 operations)

Ensemble Data Assimilation

38



EnKF update — practical computing steps

1. Generate observation ensemble
vy =y + €0 with [ M, e MT xR
2. Update each ensemble member

a(z) _ _f(@@) % () f(2) Note: Applying H directly
X =X+ Ky (yk — Hix; ) to a state vector allows a

nonlinear operation

~ ~ ~ —1
Ky, = P{H] (H.P[H] + Ry)

By computing Hkxi(z) for all ensemble members i yielding matrix HkX£

and the mean of the observed ensemble, in matrix form HkX£

Then compute

~ EE— —\ 7
Eficient Computing’s ~ HxP{HT = (H,X] — HyX]) (H,X] - H,X])
essential because we L T
work with very large PHT — (Xf _ Xf) (Hka _ Hka)
matrices! Avoid large k k k k k
temporary matrices!

Ensemble Data Assimilation



Ensemble: Model Error Estimate — free run

Ensemble-estimate of SST standard deviation on December 31

Provide uncertainty
information

= Diagonal: variances
= Off-diagonal:
covariances

= Generated dynamically
by propagating ensemble
of model states

00 0.2 04 06 0.8 1.0 1.2 14 1.6 1.8
Temperature, °C

Lars Nerger Ensemble Data Assimilation
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Ensemble: Model Error Estimate — with assimilation

Ensemble-estimate of SST standard deviation on December 31

e ko , ——
’x‘,‘q‘ K &
- 5 - 3
- "1 ¥
. R - g\
o ir&
- ~ “ .
745 - I: [ VN

= With assimilation:
Reduced uncertainty

>/ | => Error estimate accounts for
Py incorporated observational

' 6"“&\4 information

0.0 0.2 04 06 0.8 1.0 1.2 1.4 16 1.8
Temperature, °C

Lars Nerger Ensemble Data Assimilation 41



Square-root Kalman filters

Lars Nerger

(the current efficient work horses)

Ensemble Data Assimilation
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Ensemble-based/error-subspace Kalman filters

A little “zoo” (not complete):

Which filter should one use?

RRSQRT

ROEK

EnKF(94/98)

SEEK

= Different researchers developed ‘their’ filter

= Properties and differences were not well
understood (no full mathematical analysis)

= We learned from studying relations and
differences (all is very suboptimal)

EnKF(2003)
EnKF(2004)
EAKF
EnSRF

DEnKF

ETKF

SEIK

The original ‘Ensemble ‘suboptimal schemes’

Lars Nerger Kalman Filter of 1994 1990s

ESTKF

advanced EnKFs
2000/2010s

MLEF
SPKF
ESSE

RHF

other KF based
methods
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Ensemble-based/error-subspace Kalman filters

A little “zoo” (not complete):

Which filter should one use?

" EAKF
EnSRF
[ EnKF(94/98) ] DEnKF
ETKF

Today's commonly used filters =
(i s ot s este

Lars Nerger

other KF based
methods
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Ensemble transformations

Lars Nerger

P{; can be approximated by ensemble or modes: P£

Analysis at time t,:

Update of state (ensemble mean)

Xy = x£ + K (yk — Hkxi)
Update of error estimate

b = (1- KiHy ) Pf

This is incomplete!

We are missing the analysis ensemble XZ

Ensemble Data Assimilation
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Square-roots

Forecast ensemble covariance matrix:

1 / /
f_ f IF\T
Pp =% (X3)
Analysis ensemble cova{iance matrix: What is A?
/ /
Py = mxﬁ AX)T

A is not unique!
with a symmetric matrix A Different filters use

different definitions
or distinct ways to

Analysis ensemble perturbations then given by compute it

X' = XJ A1/

Lars Nerger Ensemble Data Assimilation 46



A simple test problem

Twin experiment with nonlinear shallow water equations

Initial state estimate: temporal mean state

Initial cov. matrix: variability around mean state

Compare EnKF, SEEK, and ensemble square-root filter SEIK

Initial state

Mean over 8000 time steps h [m]
W, SR 1003

1002
1001
1000
999

998

997

Lars Nerger Ensemble Data Assimilation

47



Shallow water model: filter performances

Error reduction due to assimilation

— enwr | | = SEEK uses linearized forecast:
R here it stagnates

= same convergence behavior
for EnKF and SEIK

= higher errors for
EnKF than for SEIK

= EnKF ensemble 1.5-2 times

o] larger than SEIK ensemble
T for same filter performance

(caused by sampling errors)

0 100 200 300 400 so0 * EnKF analysis step is also
Ensemble size more costly to compute

Lars Nerger Ensemble Data Assimilation 48



Hands-On Tutorial 2

Lars Nerger

Kalman and Ensemble Kalman Filters

Ensemble Data Assimilation
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Hands-on Tutorial 2: Kalman and Ensemble Filters

Use the online tutorial in the browser
http://pdaf.awi.de/DA demo/

1 (Extended) Kalman Filter vs. Optimal Interpolation

a) Use the model “Identity matrix” with default settings.
Compare the behaviour of Optimal Interpolation and Kalman Filter for
both variables x1 and x2. How do they perform differently?

b) Use the model “Oscillation” with default settings.
How do Optimal Interpolation and Kalman Filter behave differently for the
cases “Observed every x grid points” =2 and =1? (Check both state
vector values and error covariance)

Lars Nerger Ensemble Data Assimilation
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Hands-on 2: (Extended) Kalman Filter

2 (Extended) Kalman Filter
» Select ‘Method’ = ‘(Extended) Kalman Filter’

2.1 Use the model “1D advection in periodic domain” with default settings.

a) Using the default values, except reducing the model time step between

observations from 5 to 4. Now we assimilate more frequently, yet no variable
converges anymore to the truth. Why?

Lars Nerger Ensemble Data Assimilation
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Hands-on 2: Ensemble Kalman Filter

3 Ensemble Kalman Filter vs. (Extended) Kalman Filter

3.1 Use the linear model “oscillation” — set ‘Number of time steps’ =200

a) Compare the results using the Extended Kalman Filter and the Ensemble Kalman Filters
for the cases “Model time steps between observations” 5 and 4.

3.2 Use the model “Lorenz (1963)”

b) Set “Number of time steps to 80”. Compare the results using the Extended Kalman Filter
and the Ensemble Kalman Filters. How can be the results be explained taking into
account the different forecast variants of the Extended KF and Ensemble KF?

Lars Nerger Ensemble Data Assimilation
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