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Overview

Overall aim of the workshop: Get familiar with concepts of data
assimilation and selected methods for high-dimensional models

4 Blocks — lectures plus hands-on tutorials

Today

1. Data Assimilation Basics
* tutorial 1

2. Ensemble Data Assimilation
* tutorial 2

Tomorrow

3. Advanced Ensemble Kalman filters
* tutorial 3

4. Practical aspects

Lars Nerger Data Assimilation: Concepts and basic DA
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Overview - Lecture 1

Introduction to data assimilation basics: What do we aim to
achieve? What do we need? Basic optimization and estimation.
Basic assimilation methods

= Application examples

= Data Assimilation fundamentals
= Optimization and estimation

= BLUE

= Basic DA: Nudging and Optimal Interpolation

Lars Nerger Data Assimilation: Concepts and basic DA



Data Assimilation — Combining Models and Observations

Models Observations

Combine both sources of information

quantitatively and optimally by computer algorithm

=> Data Assimilation

Lars Nerger Data Assimilation: Concepts and basic DA



Data Assimilation — Characteristics of Model and Observations

Models Observations

-

LI Y
&
= jdealized representation of = measurements of ‘reality’
processes = incomplete information:
= all fields, fluxes on model grid only some fields, data gaps

ocean data: mainly surface (satellite)

= finite, quantifiable errors = finite, quantifiable errors
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Application examples

from Oceanography

Lars Nerger Data Assimilation: Concepts and basic DA



Regional Data Assimilation — Satellite Data
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» Surface temperature (from NOAA satellites)
» 12-hour composites
» Strong variation of data coverage (clouds)
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DA - effect on Temperature (September 2012)

RMS (root-mean-square) deviation

Regional DA application:
North and Baltic Seas

Assimilate surface
temperature each 12 h

Compare assimilated
estimate with assimilated
- - e ) MY e e A surface temperature data
Mean deviation (observation — model) (monthly average)
Assimilation (analysis)

» Reduce RMS deviation
and mean deviation (bias)

3 necessary effect

DA does not work
if not fulfilled

2
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DA - effect on Temperature

Compare to independent station data

SST at Marnet station Darss Sill
25 [ T i 1 T 1 T T 1 _l 1

20 : : . : .

15

T/°C

10

Marnet data

BSHcmod without DA||

LSEIK forecast
[ 1

| ! 1 ! 1 1 1 |

0 |
15/10/0715/11/0715/12/0715/01/0815/02/0815/03/0815/04/0815/05/0815/06/0815/07/0815/08/0815/09/08
date Losa et al., 2014

Further condition for data assimilation:
» reduce deviations from independent observations
(sufficient condition: show that the DA does work correctly)

Note: Usually, the observed fields are easy to improve by DA
Lars Nerger
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Improving forecasts DeMarine ./D

From: S. Losa et al., J. Mar. Syst. 105-108 (2012) 152-162

Impact of Assimilation for temperature forecasts

RMS error evolution
1 T

Model without DA
LSEIK forecas! t

= = = LSEIK analysis
120h LSEIK forecast)

0sr

08

| No assimilation

0.7
o
B

06

/ | 5-day forecast
////// \'/ | 12-hour assimilation

cycling

L . . . .
16/10/07 17/10/07 18/10/07 19/10/07 20/10/07 21/10/07 22/10/07
date

05F
[

(G
0.4F

* Very stable 5-days forecasts

» At some point the improvement might break down due to dynamics
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Example: Multivariate data assimilation to improve ocean circulation

From: Brankart et al., J. Geophys. Res. 108(C3) 3074, 2003

Assimilation of satellite data in North Atlantic:

sea surface height sea surface temperature

T 1 ] T -
80°W 60°W 40°W 20°W 0°E 80°W 60°W 40°W 20°W 0°E

Data assimilation corrects

directly: observed sea surface height and temperature

via estimated correlations: subsurface fields and velocities

Lars Nerger Data Assimilation: Concepts and basic DA
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Example: Improving ocean circulation (2)

Lars Nerger

From: Brankart et al., J. Geophys. Res. 108(C3) 3074, 2003

Velocity field with assimilation of surface temperature and height data

a 50°N b 50°N L 1 1 1 1 1 1 1
46°N
> g 42N
i 2
e e
3 8 seN
34N
{ 30°N
B0°W  76°W  72°W  68°W  B4°W  60°W  56°W  652°W 80°w
Longitude Longitude
—  50.0 —>  560.0
no assimilation with assimilation

With data assimilation:
Improvement of mean velocity field in Gulf Stream region

Indirect influence as no velocity data assimilated

Data Assimilation: Concepts and basic DA
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Longe-range effect

Lars Nerger

Example: Assimilate satellite sea surface height data (DOT)

Reduce difference to assimilated
data (necessary)
DOT Difference (AItime - FEE)

60°N [ L R SRR W

30°s &
60°S ; wf"‘&;_: (
0° 60°E 120°E 180° 120°W 60°W

DOT Difference (AItimet - ASSIM-F)

= dz

By O

120°E 180°

T120°W  60°W

Androsov et al., J. Geodesy, (2019) 93:141-157

0° 60°E

Improve also temperature at
2000m depth

Temperature difference: ARGO-FREE, 2000m

o - \& ,. ==
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1.00
0.75
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0.00
-0.25
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-0.75
-1.00
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Data Assimilation

Lars Nerger

Combine Models and Observations

Data Assimilation: Concepts and basic DA
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Data Assimilation — a general view

Consider some physical system (ocean, atmosphere, land, ...)

time Estimate not necessarily Two main approaches:
between model and o o
l observations due to Variational assimilation
state

model dynamics I

-
-~
-

Sequential assimilation

e observaton N\ D

/
/

’ o
truth Assimilation

estimate
Optimal estimate basically by least-squares fitting

(but constrained by model dynamics)

Lars Nerger Data Assimilation: Concepts and basic DA
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Terminology: Smoother — Filter — Forecast

Consider some physical system (ocean, atmosphere, land, ...)

Smoother:
time Estimate from past,
> present and future
l state observations

¢ Forecast:
prediction based
on previous
observations

-
\\\ —f”
S =

‘ Filter: ° —~
truth estimate from past and assimilation

present observations estimate

Lars Nerger Data Assimilation: Concepts and basic DA 18



What is Data Assimilation?

Data Assimilation is the science of combining information

from computational models and observations
accounting for uncertainties in both information sources.

= Optimal estimation of system state:

= initial conditions (for weather/ocean forecasts, ...)
= state trajectory (temperature, concentrations, ...)
= parameters (growth of phytoplankton, ...)

= fluxes (heat, primary production, ...)

= boundary conditions and ‘forcing’ (wind stress, ...)

= More advanced: Improvement of model formulation
and observation system
= Detect systematic errors (bias)
= Revise parameterizations based on parameter estimates

= Find observations that are relevant
Lars Nerger Data Assimilation: Concepts and basic DA
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Needed for Data Assimilation

Lars Nerger

1. Model
= with some skill
2. Observations

= with finite errors

= related to model fields

3. Data assimilation method

= usable with model and observations
(e.g. model dimension or nonlinearity)

Data Assimilation: Concepts and basic DA
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Models

Simulate dynamics of ocean

= Numerical formulation of relevant terms

= Discretization with finite resolution
in time and space

= “forced” by external sources
(for ocean: atmosphere, river inflows)

Lars Nerger Data Assimilation: Concepts and basic DA

= e
A e N
\\'§§

Variable-resolution mesh
(ocean model FESOM)

Resolution [km]
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Model errors

= Representation of reality is not exact

= |nsufficient resolution
= |ncomplete equations (e.g. missing processes)

= |nexact forcing (e.g. wind stress on ocean surface)

= Accounting for model error

Lars Nerger

= |nflation (partly)
= Simulate stochastic part

= Bias estimation

Data Assimilation: Concepts and basic DA
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Model Error Estimate

Lars Nerger

Error (uncertainty) in sea surface temperature
(estimate from model dynamics of atmosphere-ocean climate model)

We can also estimate error
covariances, e.g. in between
different model fields

0.0 0.2 04 06 08 1.0 1.2 1.4 16 1.8

Temperature, °C

Data Assimilation: Concepts and basic DA 23



Observations

Lars Nerger

Measure different fields - e.g. in the Ocean:

Remote sensing (satellite, aircraft, radar)

In situ (ships, fixed stations, buoys, drifters)

Data is sparse: some fields, data gaps

Uncertainties

e.g. surface temperature, salinity, sea surface
height, ocean color, sea ice concentrations &
thickness

e.g. temperature, conductivity, pressure,
currents

Measurement errors

Representation errors:

Model and data do not represent exactly the same
(e.g. caused by finite model resolution)

Data Assimilation: Concepts and basic DA 24



Observation Error Estimates

If observation errors available: If no observation errors available:
= Use as error estimate, but = need to estimate them
= Need to account for representation errors = Perhaps need to estimate also
(measurement errors are too low) representation errors
logarithmic data errors provided with data errors from comparison with 2186

satelllte chIorophyII data (OC CCI) collocation points of in situ data (SeaW|FS)

80°E 120°E 160°E 160°W 120°W 80°W  40°W 0.05 30 60 90 120 150 180-150-120 -90 -60 -30 0O 30

Pradhan et al, JGR 2019 Nerger & Gregg, JMS 2007 @/
25
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Least Squares

Lars Nerger

and Optimization

Data Assimilation: Concepts and basic DA
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Least Squares Approach

Lars Nerger

Consider two temperature measurements: 19°C and 21°C

Now get estimate for the true value

Measurements: y, = 19°C, y, = 21°C
State estimate: x

Quadratic mismatch :

J() = © (g1 — 2% + (g2 — @)’

Scalar value: cost _
General way to get solution:

Minimum of J(x): N Minimize J (optimization)
~ Y1 TY2
b= = 20°C dJ/dx =0
Data Assimilation: Concepts and basic DA 27



Least Squares (2)

Two temperature measurements:
y4=19°C from digital thermometer with 0.1°C scale

y,=21°C from classical mercury thermometer; 1°C scale

Now get estimate for the true value

How do we account for the different precision of the measurements?

Adapt quadratic mismatch :
1 Yyr — ? Y2 — T ?
Jx)==-|| ZT—= R
) =3 ( 0.1 ) +( 1

11 '

Minimum of J(x): I =

28
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Least Squares (3)

Now consider estimating a field

We have again 2 observations

Deviation between observation y and model state x

y — H[x]
Quadratic mismatch : I—Iength=648
1
J(x) = i(y — Hx)'R(y - Hx]) R.: weight matrix
1
length=2

Now find X that minimizes J
= xis much largerthany =» under-constrained problem
= we need more observations or additional information =» previous state or model

-» Data assimilation

Lars Nerger Data Assimilation: Concepts and basic DA
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Some statistics

Lars Nerger

Data Assimilation: Concepts and basic DA
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Variance, Covariance, Correlation — scalar values

Lars Nerger

k 4k
Consider two populations of N scalars: S , 1 ,1 < k < N

Then i N
Variance: VaI'(S) = m (Sk — §)2
N
C ' : t k —t
ovariance: cov(s,t) N 1 Z )
k=1
cov(s,t)

Correlation: cor(s,t) =

with
—1 < cor(s,t) <1, cor(s,s) =cor(t,t) =1

Data Assimilation: Concepts and basic DA

Example:
Throwing dice

« W o ‘o
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Vector case: Covariance and Correlation Matrices

Consider two populations of N vectors: uk, Vk, 1<k<N

Then
Covariance matrix: 1 N

cov(u,v) = N1 ’; (u* — 1) (vF - V)T

Ifu=v: COV(V, V) is auto-covariance matrix of V

COV(V, V) iIs symmetric and positive semi-definite

cov(u, v);;

Correlation matrix: Cor(u, V)ij —
Ou,;Ov;

Each element is normalized by standard deviations
Auto-correlation matrix:

COVIV, V),
(symmetric) COI‘(V,V)ij — ( ) )zg

Ov,Ov;

Lars Nerger Data Assimilation: Concepts and basic DA



Gaussian function / Normal distribution

For scalar values (n=1) “

VO = e [

For vectors (dimension n): = :
N(u) = \/(ZW)idet(P) exp [—%(u — o) TP (u - 1)

with: P = cov(u, u)

= Gauss function is fully described by mean and variance
(or mean vector and covariance matrix)

= Factor before exp is normalization (ensures that area below curve = 1)

Lars Nerger Data Assimilation: Concepts and basic DA



Covariance matrices

Lars Nerger

E.g. state error covariance matrix P

. 2
» Represent error (variance o~) and
dependence of errors in different variables (covariances)

T
Example: 2 variables X = ( g )

2 TS
Covariance matrix: P = ( cov(j(qi’S) COV(E% ) )

. : 2 2
Now normalize variances 0 — 1 , 05 — 1

corr(T'S) = cov(T5) —1<corr(TS) <1
Oor Og
: » B 1 corr(T'S)
Correlation matrix: C = ( corr (T S’) ) )

corr(T'S) correlation: How much changes S when changing T

Data Assimilation: Concepts and basic DA
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BLUE

Lars Nerger

Data Assimilation: Concepts and basic DA
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Statistical Estimate

Consider that our estimates (as realization of random values)

have errors: t
y1 =y' +e; Yo =Y + €2
yt is the true value

Statisical assumptions on the errors €;, % =1,2

E(e;) =¢; =0 -» Measurements are unbiased
var(e;) = o7 - Errors are known (but random)
COV(el, 62) =0 => Errors are independent
Now find optimal estimator Z that is
. L 5= o + o Yields the best
near — a1 292 linear unbiased
 Unbiased E(%) = y* estimate

T (BLUE)
» of minimal variance  var(Z) minimum

Lars Nerger Data Assimilation: Concepts and basic DA
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Statistical Estimate (2)

t ot
Now combine Y1 =Y +e Yo =Y + €2
with T = 01Y1 + 0y
We get T = (041 + Oéz)yt + 1e1 + aes

Expected value:

E(2) = (01 + o)y + a1 E(eq) + asE(es)
\_'_l \_'_’
0 0

We require unbiasedness: FE(Z) =y

This implies: ap +os =1

Lars Nerger Data Assimilation: Concepts and basic DA



Statistical Estimate (3)

It is £ = (a1 + o)y’ + ore1 + ases

Variance: var(2) = E[(Z — y%)?]

= E[(alel -+ a262)2]

9 2 2 92
= Q107 + 050,

= a%a% + (1 - al)zag

Minimum variance:

9 ar(@) = 0 0=dawo) 4 Jncy 20
0oy ap = 2‘72 _
o1 + 05

Lars Nerger Data Assimilation: Concepts and basic DA
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Statistical Estimate (4)

Lars Nerger

Best linear unbiased estimate (BLUE)

T = oY1 + 02ye

2 2
05 01
With: o1 = ar =1—-a1 =
02+ 03 0%+ o3
5 1 2 2
Thus: T = — 5 (02 Y1 + alyz)

R 1 1 1
Equivalentt Z = —3 I 5 Y1+ 5292
o2 o2 1

Error in BLUE estimate: 1 1

Inverse variance:
(accuracy)

Data Assimilation: Concepts and basic DA
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Statistical Estimate (5)

Best linear unbiased estimate (BLUE)

p 1 (1y+1y)
— 1 “9J2

Also the solution when minimizing (i.e. optimizing):

1) = 5 (U B2l

2 o1 b

Statistical reason for temperature example:

03| (“57) + (45)
1 1

A\1—1 /(A
Further: =5+ =J(Z
urther [var(Z)] 0% + 05 (Z)

[\

Lars Nerger Data Assimilation: Concepts and basic DA
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Basic Data Assimilation

Lars Nerger

Data Assimilation: Concepts and basic DA
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Data Assimilation — Model and Observations

Two components:

1. State: x € R" (contains different model variables)

Dynamical model
X; = Mz’—l,i [xz’—l]

2. Obervations: y € R™ (contains different observed fields)

Observation equation (relation of observation to state x):
y = H [x]

Dimensions:
state n: 106 — 10°
observations m: 104 — 107

Lars Nerger Data Assimilation: Concepts and basic DA
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Direct Insertion

= Part of the state vector is observed
= Now replace observed part of state vector by observations
= Observed points XZ,jf(,,;) = Yk,
= Unobserved points Xz,j = XL j
(j°(i) is the index of the state vector element corresponding to

observation i)

= This assumes that model error > observation error

= Problems

= Inconsistency between updated and preserved parts of
state vector

= Leads to adjustment processes that can degrade
model results (e.g. geostrophic adjustments)

Lars Nerger Data Assimilation: Concepts and basic DA
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Nudging

= Part of the state vector is observed
= Now replace observed part of state vector by observations
= Observed points xz,j'(i) = Xi,j,(i) Ty (Yk,i - Xi,j/(i))

= Unobserved points xz,j = x£j ‘ T '
’ relaxation to observation

/() is the index of the state vector
element corresponding to observation i)

r(y-x) for r=1, y=1, xo=0

= 1/r is relaxation time scale o8

06

= Effect is exponential decay

04r

02r

Lars Nerger Data Assimilation: Concepts and basic DA 44



Nudging (2)

Lars Nerger

Nudging was common for DA ~30 years ago
= Superseded by Optimal Interpolation

Some applications today
= SST nudging: constrain surface heat flux
= Nudging towards climatology: prevent drift of model

Problems
= introduces small imbalance (initially higher influence)
= reduces model variability

practically, nudging modifies the model equations

Data Assimilation: Concepts and basic DA
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Optimal Interpolation

Lars Nerger

Data Assimilation: Concepts and basic DA
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BLUE as Statistical Estimate with Model

Best linear unbiased estimate for

Model prediction: b = gt + ep with: Var(eb) = 0'2

. t
Observation: Y= + €, with: Var(eo) = O'g
. 1 2 2
Solution: T = o, Tp + OpY
o_g n o,g ( o b )
2
. . T%
Equivalent to T=2Tp+ —5 5 (y — SCb)
oy + 07
\ ) L Y ) \ Y )

background + gain x innovation

Equivalent to

minimizing: J(x) = 9 2 + ) 2

Lars Nerger Data Assimilation: Concepts and basic DA

Error in estimate

47



BLUE in vector form — Optimal Interpolation (Ol)

Lars Nerger

A general time independent linear data assimilation problem

Cost function:
J(x) = (x-x")" B (x—x")+(y - H[x))"R™(y — H [x])

With covariance matrices
B background error covariance matrix

R observation error covariance matrix

Minimum of J
x*=x"+ (B 1+ H'R'H)"'HTR (y — Hx")
\ J\ J
Y Y
gain matrix innovation

vector

Equivalent (Sherman-Morrison-Woodbury identity)
x% = x* + BH' (HBH” + R)"!(y — Hx?)

Data Assimilation: Concepts and basic DA 48



Practical difficulties

Lars Nerger

Analysis equation
a _ b T T —1 b
x*=x"+BH" " (HBH" +R) "(y — Hx")
Matrices are huge:
B : n x n with n between 108 and 10°
R : m x m with m between 10% and 107

- Not feasible to store B or to compute B

= We cannot compute the gain explicitly

-> Need to reduce size of problem

Note:
 Dimensions were smaller ~25 years when Ol was common
« But, computers were also much smaller than today

Data Assimilation: Concepts and basic DA
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A final note on Ol

Lars Nerger

The method was common ~25 years ago
« It cannot handle nonlinear observation operators

* The local selection of observations sometimes induced
discontinuities in x2

Ol was superseded by
* Variational assimilation
« Ensemble Kalman filters

» There are still applications for small models

(linear or weakly nonlinear)

» Today, some applications use ensemble Ol,

i.e. Ol with B represented by ensemble of model state realizations

Data Assimilation: Concepts and basic DA
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Estimation Problem

Lars Nerger

Data Assimilation: Concepts and basic DA
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Data Assimilation — An Estimation Problem

Probability density of x: P (X; ) ol
Probability density of y: p (y;) ol
Likelihood of y given x: P (¥4|X;) of
(conditional probability) N
Area=1.0
p=0
Bayes law: Probability density of x given y
Likelihood of observations Prior distribution
\ /
p (yilx:) p (%)
p (Xilyi) =
arginal distribution
Marginal distributi
Posterior probability distribution of observations

Lars Nerger Data Assimilation: Concepts and basic DA 52



Estimate assuming Gaussian error distributions

Lars Nerger

Assume Gaussian distributions:

N (0?) —a o)

(fully described by mean and variance) 0al

Observations: N (y, R)

State:
N(X, P) Estimation problem leads to same
assimilation result in case of
Posterior state distribution Gaussian errors
:p(xz- |Yz) \~ ae” 7 (¥) ... but it also yields a solution for
with T ' non-Gaussian/non-linear cases

J(x) = (x = x")"P 7 (x = x") + (y - H[x])"R™(y — H [x])

Data Assimilation: Concepts and basic DA
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Hands-On Tutorial 1

Lars Nerger

Nudging and Optimal Interpolation

Data Assimilation: Concepts and basic DA
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Hands-On Tutorial 1

Some experiments with basic data assimilation:
* Nudging

« Optimal Interpolation

Use the online-tutorial in the browser

http://pdaf.awi.de/DA demo/

Lars Nerger Data Assimilation: Concepts and basic DA
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Hands-On 1: Nudging

Instructions:

» Set ‘Model’ to ‘Identity matrix’, i.e. x;,.; = X; or ‘Oscillation’

« Set ‘Number of time steps’ = 40 for ‘Identity matrix’;

=200 for ‘Oscillation’

» Set ‘Method’ to ‘Nudging’

« Keep other values to the default (reload is necessary)

| Model parameters

Model | Identity matrix

—{ Data assimilation parameters}

v Method | Nudging

Equation(s)

x+D) — 5@

Number of time steps |40
rue initial condition x' |1

f

Covariance matrix of initial condition error P!

:

Covariance matrix of model error Q g 8
Observed every x grid points 2

| Model time steps between observations 125
Observation error variance [0.2

Lars Nerger

S, [
l Relaxation time-scale for nudging 140

| Run assimilation | | Reset to defaults || Download |

Note: You can select
the element of the state
vector in the plots:

tor‘
Ihdex 1 v | Show: E Truth [ Free run {4 Assi

4.0

3.0

20

1.0

0.0

0 5

Data Assimilation: Concepts and basic DA
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Hands-On 1: Nudging

Instructions:

In these experiments compare the state estimate from the assimilation (red) with
a) The true state ( ; this is what the DA tries to estimate)
b) The observations (green circles; they are the truth plus noise)

What are the effect of different settings for estimating the true state?

1) Model: Identity matrix — Basic behavior of nudging:

a. What is the effect of nudging in case of a single observation?
(Set model time steps between observations = 25)

b. What is the effect of nudging in case of frequent observations?
(Set model time step between observations = 1)

c. What happens in the cases above when you vary the relaxation time scale?
(e.g. test 5, 10, and further in steps of 10 up to 100)

d. What happens for the very small relaxation time scale = 1?

2) Model: Oscillation

a. How does the assimilation result change when you vary the relaxation time-scale (5,10,20,...,100)?
b. There is no optimal relaxation time-scale — why?

c. What is the effect of varying ‘Model time steps between observations’ (range 1-10)?

Lars Nerger Data Assimilation: Concepts and basic DA
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Hands-On 1: Optimal Interpolation (Ol)

Lars Nerger

Instructions:
» Set model to ‘Identity matrix’ or ‘Oscillation’
« Set ‘Method’ to ‘Optimal Interpolation’

3) Optimal interpolation vs. Nudging
a. For Identity matrix‘, how does the assimilation effect of Ol differ from that of nudging?
b. For ,Oscillation‘, how does the assimilation effect of Ol differ from that of nudging?

4) Effect of model dynamics:

a. With the default settings how does the effect of the Ol assimilation on the variable x, of
the model “Identity matrix” and “Oscillation” differ?

5) Influence of correlations:

a. For the model “Identity matrix”. What is the effect of Optimal Interpolation on x; and x if
the non-diagonal values of ,Covariance matrix of initial condition error Pi“ are set to 0.9?

Data Assimilation: Concepts and basic DA
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