EGU General Assembly 2025

SC3.14 Getting Started with Data Assimilation: Theory and Application

Qi Tang^{1,2}, Lars Nerger³, Armin Corbin⁴, Nabir Mamnun⁵, Yumeng Chen⁶

¹University of Neuchâtel, Centre for Hydrogeology and Geothermics (CHYN), Switzerland

²University of Basel, Centre for Hydrogeology and Geothermics (CHYN), Switzerland

³Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany

⁴University of Bonn, Institute for Geodesy and Geoinformation, Astronomical, Physical and Mathematical Geodesy Group, Germany

⁵Imperial College London, Physics, United Kingdom of Great Britain – England, Scotland, Wales

⁶University of Reading, National Centre for Earth Observation, Department of Meteorology, United Kingdom of Great Britain

Schedule

30 Apr 2025

I Theory

30 Apr 2025

Data Assimilation (DA)

Data assimilation (DA) is the science of **combining observations** of a system, **including their uncertainty**, with estimates of that system from a dynamical **model**, including its **uncertainty**, to obtain a new and more accurate description of the system including an uncertainty estimate of that description. Vetra-Carvalho et al. (2018)

model

- idealized representation of a system	+ measurements of "reality"
 complete coverage: often located on a grid or mesh, high temporal and spatial resolution 	 Incomplete: sparse, discrete, data gaps, irregular sampling, missing state variables
	- outliers
guantifiable systemat	tic and random errors

30 Apr 2025

30 Apr 2025

Example: Climate

30 Apr 2025

Requirements for DA

- 1. Model
 - With some skill
- 2. Observations
 - With finite errors
 - Related to model fields
- 3. Data assimilation method

30 Apr 2025

Dynamical System

The future state depends on the present state

30 Apr 2025

Model Operator

state model errors

$$\downarrow \\
x(t) = \mathcal{M}_{s,t}(x(s)) + \eta(t)$$

model/forward operator: propagates state from time s to t

Linearized Operator:
$$M_{s,t} = \left. \frac{\partial \mathcal{M}_{s,t}(x)}{\partial x} \right|_{x=x(s)}$$

30 Apr 2025

Observation Operator

30 Apr 2025

SC3.14 Getting Started with Data Assimilation: Theory and Application

11

30 Apr 2025

SC3.14 Getting Started with Data Assimilation: Theory and Application

12

PDAFParallel

Data Assimilation

Framework

J	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\$	PDA Assim Frances Arrin Cobin Value Value	Parallel 1ilation mework
	Statistical	Variational	
	Estimation theory	Optimal control theory	
	Maximization of probability density (minimization of variance)	Minimization of cost function (e.g. Gauss-Newton, conjugate gradient)	

Filter and Smoother

	statistical	variational
filter	Kalman filter Particle filter	3D VAR
smoother	Kalman smoother Particle smoother	4D VAR

Optimization

30 Apr 2025

Kalman filter is optimal

Optimal: state is unbiased and has minimal variance Assumptions:

30 Apr 2025

Kalman Filter

1. Forecast/Prediction

State propagation

 $x_i = M_{i-1,i} x_{i-1} + \varepsilon_i$

Propagation of error estimate

$$P_{i}^{f} = M_{i-1,i}P_{i-1}^{a}M_{i-1,i}^{T} + Q_{i-1}$$

- 1. M and P explicitly required
- 2. Linear Transformation

2. Analysis/Update at time t_k

State update
$$x_k^a = x_k^f + K_k(y_k^o - H_k x_k^f)$$

Propagation of error estimate

$$P_k^a = (I - K_k H_k) P_k^f$$

with Kalman gain

 $K_{k} = P_{k}^{f} H_{k}^{T} \left(H_{k} P_{k}^{f} H_{k}^{T} + R_{k} \right)^{-1}$

3. Scales poorly with the size of the problem

30 Apr 2025

Large Scale Models

State dimension: $10^6 - 10^9$ Observations: $10^5 - 10^7$

The covariance matrix of the model errors **P** is the limiting factor.

Memory consumption increases quadratically

Matrix multiplication has complexity of $\mathcal{O}(n^3)$

How to get **P**?

Kalman filter is often infeasible

30 Apr 2025

Ensemble Kalman Filters

represent state and uncertainty by ensemble of model instances

30 Apr 2025

The Zoo of Kalman Filters

30 Apr 2025

Covariance Localization

• Multiply covariance matrix of forecasted ensemble point wise with finite covariance function or exponential decay

Armin Corbin

Domain Localization

- subdivide model into disjoint sub-domains
- update each sub-domain individually taking only observations within specific distance into account

30 Apr 2025

Observation Localization

- implies domain localization
- weigh observations of each subdomain with a (finite) covariance function dependence on distance

Inflation

- True variance is always underestimated, due to
 - small ensemble size
 - sampling errors (unknown structure of P)
 - model errors

Inflation → Increase error estimate before analysis

- Increase ensemble spread by constant factor
- Needs to be experimentally tuned

Ensemble values

before inflation inflated

30 Apr 2025

Co-Estimation of Model Parameters (Model Calibration)

1. augment state vector with model parameters

2. estimate parameters using observations of model fields

30 Apr 2025

II Applications

30 Apr 2025

SC3.14 Getting Started with Data Assimilation: Theory and Application

27

Improve real-time groundwater level

piezometers & soil moisture

Т

30 Apr 2025

- Without DA: the simulation can lead to an error of 25cm during the pumping period
- With DA: errors are reduced by 60%

ang, Q., Delottier, H., Kurtz, W., Nerger, L., Schilling, O. S., and Brunner, P.: HGS-PDAF (ersion 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological
nodel, Geosci. Model Dev., 17, 3559–3578, , 2024.	

Dossier	
Domain	Hydrogeology
Model	HydroGeoSphere
N state	316 240
N obs.	8
N ens.	128
ΔΤ	1 day
duration	96 days
Filter	EnKF

Coupled ocean-atmosphere DA

m above surface for the free run and assimilation runs:

Nerger et al. (2020): Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0), Geosci. Model Dev. Tang et al. (2021): Strongly coupled data assimilation of ocean observations into an ocean-atmosphere model. Geophysical Research Letters

SC3.14 Getting Started with Data Assimilation: Theory and Application

30 Apr 2025

Improving regional ocean physics and biogeochemistry

Satellite surface temperature

Satellite chlorophyll concentration

Assimilation effect (RMS error) on surface tempeature (top) and chlorophyll (bottom), with 14-day forecasts (green)

Dossier	
Domain	Ocean
Model	NEMO-ERGOM
N state	~700,000,000
N obs.	200,000
N ens.	30
ΔΤ	1 day
duration	5 months
Filter	LESTKF

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004032.

Upper Atmosphere Density

accelerometer

Dossier	
Domain	Atmosphere
Model	TIE-GCM
N state	870 912
N obs.	1
N ens.	96
ΔΤ	1 min
duration	2 weeks
Filter	(L)ESTKF

Corbin, A. & Kusche, J. Improving the estimation of thermospheric neutral density via two-step assimilation of in situ neutral density into a numerical model. Earth, Planets and Space 74, 183 (2022).

30 Apr 2025

PDAF Parallel Data Assimilation Framework

Arctic sea ice

Cheng, S., Chen, Y., Aydoğdu, A., Bertino, L., Carrassi, A., Rampal, P., and Jones, C. K. R. T.: Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020, The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023, 2023.

30 Apr 2025

Estimating Spatially Varying Ocean Biogeochemical Process Parameters

30 Apr 2025

Global Ocean Biogeochemical Reanalysis

Dossier	
Domain	Ocean
Model	NEMO-PISCES
Model resolution	1/4 degree
Obs.	Daily Sat. Chl. SOCAT-NN
ΔΤ	7 day
duration	30 year
Filter	SEEK

Resplandy et al., 2018

30 Apr 2025

III Hands On

30 Apr 2025

A taste of DA on Lorenz 96 model

- · Hands on ensemble-based Kalman filter and 3DVar
- Twin experiments
 - One model run is deemed truth
 - · Observations are sampled synthetically from the truth
 - Assimilation is performed with a different model initial condition
- Feel free to ask questions if you run into any problems!

Available on Google Colab: https://tinyurl.com/2kmkfr74

exercise, we aim to provide you with insights into the power and effectiveness of data assimilation techniques, as well as introduce you to

References

Asch, M, M. Bocquet, M. Nodet, Data Assimilation: Methods, Algorithms, and Applications, SIAM, 2017

Evensen, G., F. Vossepoel, P. J. van Leeuwen, Data Assimilation Fundamentals, Springer, 2022

Moreaux, G., *Compactly Supported Radial Covariance Functions*, Journal of Geodesy 82.7, 2008

Vetra-Carvalho, S., Van Leeuwen, P.J., Nerger, L., Barth, A., Altaf, M.U., Brasseur, P., Kirchgessner, P. and Beckers, J.-M., *State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems,* Tellus A: Dynamic Meteorology and Oceanography, 70(1), 2018

30 Apr 2025