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Schedule

I Theory (45 min) II Applications (15 min) III Hands-on (45 min)



SC3.14 Getting Started with Data Assimilation: Theory and Application30 Apr 2025 3

I Theory
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Data Assimilation (DA)
Data assimilation (DA) is the science of combining observations of a
system, including their uncertainty, with estimates of that system from a
dynamical model, including its uncertainty, to obtain a new and more
accurate description of the system including an uncertainty estimate of that
description. Vetra-Carvalho et al. (2018)

+ observationmodel
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model observation
- idealized representation of a system + measurements of “reality”

+ complete coverage: often located on a grid or 
mesh, high temporal and spatial resolution

- Incomplete: sparse, discrete,
data gaps, irregular sampling, missing state 
variables
- outliers

quantifiable systematic and random errors
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FESOM 1.4, North Atlantic velocity field at 100m
Credits: Thomas Rackow (simulation), Nikolay Koldunov (visualization)

+

Example: Ocean

https://fesom.de/fileadmin/user_upload/fesom.de/user_upload/Media/Images/NA4_na_19501227.png
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+

Example: Climate

Image: DWD’s Climate Services Observing – Modelling – Consulting

https://www.dwd.de/EN/ourservices/climate_services_report/brochure.html;jsessionid=DE84E947BE71E90AE5DFD021C20BBD5F.live31094
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Requirements for DA
1. Model

• With some skill

2. Observations
• With finite errors
• Related to model fields

3. Data assimilation method
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Dynamical System
The future state depends on the present state

convergent divergent chaotic
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Model Operator
model errorsstate

model/forward operator: propagates state from time s to t

Linearized Operator:
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Observation Operator
observations observation errorsstate

observation operator: maps state to observation

Linearized Operator:
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Adopted from Asch et al. (2016)

Statistical
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Statistical Variational
Estimation theory Optimal control theory

Maximization of probability density
(minimization of variance)

Minimization of cost function (e.g. 
Gauss-Newton, conjugate gradient)

Armin Corbin Armin Corbin

Probability „Cost“
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Filter and Filter SmootherSmoother

Armin Corbin
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statistical variational

filter Kalman filter
Particle filter 3D VAR

smoother Kalman smoother
Particle smoother 4D VAR
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Kalman Filter

state observation operator

observationsforecast

4D Var
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Kalman filter is optimal

1. Linear model
2. Linear function between observations and state
3. State is normal distributed

Optimal: state is unbiased and has minimal variance
Assumptions:

1. everything is Gaussian 2. model and observation 
operator are linear

3. model errors are not 
correlated with state or 
observation errors
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Kalman Filter
1. Forecast/Prediction 2. Analysis/Update at time tk
State propagation

Propagation of error estimate

State update

Propagation of error estimate

with Kalman gain1. M and P explicitly required

2. Linear Transformation

3. Scales poorly with the size of the problem
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Large Scale Models

Memory consumption 
increases quadratically

How to get P?

State dimension: 106 - 109                      Observations: 105 - 107

The covariance matrix of the model errors P is the limiting factor.

colourbox

colourbox

Kalman filter is often infeasible

Matrix multiplication has 
complexity of
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Ensemble Kalman Filters

ensemble matrix

𝑋
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ensemble variance

represent state and uncertainty by ensemble of model instances

free-running ensemble cycled assimilation
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The Zoo of Kalman Filters

not complete
Armin Corbin

Many efficient schemes were 
developed- still high dimensions 

cause problems
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Covariance Localization
• Multiply covariance matrix of forecasted ensemble 

point wise with finite covariance function or exponential decay

Armin Corbin
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Domain Localization
• subdivide model into disjoint sub-domains
• update each sub-domain individually taking only observations within specific 

distance into account

3x3 sub-domain

center of sub-domain

grid cell

cut-off radius

Armin Corbin
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Observation Localization
• implies domain localization
• weigh observations of each subdomain with a (finite) covariance function

dependence on distance 

+
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Inflation
• True variance is always underestimated, due to

• small ensemble size
• sampling errors (unknown structure of P)
• model errors

Inflation ➜ Increase error estimate before analysis

• Increase ensemble spread by constant factor
• Needs to be experimentally tuned

inflated
before

inflation

Ensemble values
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Co-Estimation of Model Parameters
(Model Calibration)

1. augment state vector with model parameters
2. estimate parameters using observations of model fields

state

model parameters
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II Applications
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Improve real-time groundwater level
Dossier
Domain Hydrogeology
Model HydroGeoSphere
N state 316 240
N obs. 8
N ens. 128
ΔT 1 day
duration 96 days
Filter EnKF

piezometers & soil moisture

Absolute head difference

• Without DA: the simulation can 
lead to an error of 25cm during 
the pumping period

• With DA: errors are reduced by 
60%

Tang, Q., Delottier, H., Kurtz, W., Nerger, L., Schilling, O. S., and Brunner, P.: HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological 
model, Geosci. Model Dev., 17, 3559–3578, , 2024.
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Coupled ocean-atmosphere DA
Dossier
Domain Ocean & 

atmosphere
Model AWI-CM
N state Global scale
N obs. Global 
N ens. 46
ΔT 1 day
duration 1 year
Filter LESTKF

Satellite surface 
temperature

Profiles

Nerger et al. (2020): Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0), Geosci. Model Dev.
Tang et al. (2021): Strongly coupled data assimilation of ocean observations into an ocean-atmosphere model. Geophysical Research Letters

Average bias (model simulation - ERA-interim) of temperature at 2 
m above surface for the free run and assimilation runs; 
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Improving regional ocean physics and biogeochemistry

Dossier
Domain Ocean
Model NEMO-ERGOM
N state ~700,000,000
N obs. 200,000
N ens. 30
ΔT 1 day
duration 5 months
Filter LESTKF

Assimilation effect (RMS error) on surface 
tempeature (top) and chlorophyll (bottom), 

with 14-day forecasts (green)

Satellite surface temperature

Satellite chlorophyll concentration
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Upper Atmosphere Density
Dossier
Domain Atmosphere
Model TIE-GCM
N state 870 912
N obs. 1
N ens. 96
ΔT 1 min
duration 2 weeks
Filter (L)ESTKF

accelerometer
ONERA

Corbin, A. & Kusche, J. Improving the estimation of thermospheric neutral density via two-step assimilation of in situ neutral density into a numerical model. Earth, Planets and Space 74, 183 (2022).

global assimilation
localized assimilationobservations
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Arctic sea ice
Dossier
Domain Cryosphere
Model neXtSIM
Model 
resolution

12 km

Obs. Sea ice 
thickness and 
concentration

N ens. 40
ΔT 1 min
duration 6 months
Filter DEnKF

Cheng, S., Chen, Y., Aydoğdu, A., Bertino, L., Carrassi, A., Rampal, P., and Jones, C. K. R. T.: Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice 
model for the winter 2019–2020, The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023, 2023.
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Estimating Spatially Varying Ocean 
Biogeochemical Process Parameters

Dossier
Domain Ocean
Model MITgcm-

REcoM2
Model 
resolution

20-110km

Obs. Ocean Colour 
Chlorophyll-a

N ens. 40
ΔT 5 day
duration 1 year
Filter LESTKF

Ocean Colour in 
the North Sea

Image: NASA Earth Observatory 

Spatially Varying 
Parameter Estimates
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Global Ocean Biogeochemical Reanalysis

Dossier
Domain Ocean
Model NEMO-PISCES
Model 
resolution

1/4 degree

Obs. Daily Sat. Chl.
SOCAT-NN

ΔT 7 day
duration 30 year
Filter SEEK

Surface ocean pCO2

Resplandy et al., 2018
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III Hands On
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Available on Google Colab:
https://tinyurl.com/2kmkfr74

A taste of DA on Lorenz 96 model
• Hands on ensemble-based Kalman filter and 3DVar

• Twin experiments
• One model run is deemed truth
• Observations are sampled synthetically from the truth
• Assimilation is performed with a different model initial condition

• Feel free to ask questions if you run into any problems!
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