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| Theory (25 min)

Analysis at time t,:

State update
Xg = xL + Kg (yk —Hkx\

Update of error estimate
Pg = (I - KB P
with "Kalman gain”

K; = P/HT (Hkpf Ht H\A

[l Applications (20 min)

[l Hands-on (45 min)
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Data Assimilation

Data Assimilation (DA) Framework

Data assimilation (DA) is the science of combining
observations of a system, including their
uncertainty, with estimates of that system from a
dynamical model, including its uncertainty, to obtain a
new and more accurate description of the system
including an uncertainty estimate of that description.

Vetra-Carvalho et al. (2018)
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Adopted from Asch et al. (2016)
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Requirements for DA

1. Model
 With some skKkill

2. Observations
 With finite errors
 Related to model fields

3. Data assimilation method
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https://science.nasa.gov/get-involved/toolkits/spacecraft-icons
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Observation Operator D e meuon

observations state observation errors

|
y(t) = H (x(t)) + (1)

I

observation operator: maps state to observation

OH (x)
Ox x=x(t)
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Linearized Operator: H p—
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Model Operator D oo

state model errors

! !
x(t) = Ms,t(x(s)) +n(t)

I

model/forward operator: propagates state from time s to t

8M5’t(X)
Ox
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Linearized Operator: MS i
!

x=x(s)



Sequential and ‘Variational DA

. inital state
9 /\ 47 + \model
S
’ \
observation truth

time
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Optimization

Sequential

inital state

model

state

\

observation

truth

time
forecast observations

J(x):‘x—x,- e
R

observation operator

state

14+ |H(x) — y"o‘?R,)l
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Variational (4D Var)

truth

observation

J(xo)

time

1—|—Z [ H(x;) — y7

’XO —Xo’
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" . - Data Assimilation
Kalman filter is optimal Framenork
Optimal: state is unbiased and has minimal variance
Assumptions:
1. everything is Gaussian 2. model and observation 3. model errors are not
operator are linear correlated with state or
0.4. /; 00 05 observation errors
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Kalman Filter e amenork
1. Forecast/Prediction 2. Analysis/Update at time t,
State propagation State update
xi=M;_1ixi_1+¢€; xa:forK(O—fo)
i i—1.iXi—1 i k k k\ Yk kX k
Propagation of error estimate Propagation of error estimate

Pl =M1 iPPaMly i+ Qi P (1~ K P

/

1. M explicitly required with Kalman gain

—1
fyT fyT
2. Scales poorly with the size of the problem Kk — 'Dk Hk (Hk'Dk Hk + Rk)
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Large Scale Models P A e
Dimension of _ Combined memory of best super
state vector Required memory (double) computer' accumulates to 9 200 TB
, S ot £ ﬁ, | o7
1.000 000 8 MB 8 TB '
10 000 000 80 MB 800 TB TEN
100 000 000 800 MB 80 000 TB '

CC BY 2.0 OLCF at ORNL (cropped)

Storing and multiplication of the
covariance matrix of the state
becomes tOO expenS|Ve 1According to TOP500 List of Nov 2023
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https://www.top500.org/lists/top500/2023/11/
https://creativecommons.org/licenses/by/2.0/
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Ensemble Kalman Filters D Aot

x 1015
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Mar 2010
ensemble matrix ensemble mean ensemble variance
1 _ _
X =[z120 -+ xp) T =—-XI Pf%nll(X—X)(X—X)T
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Filters D R o

1960 I_K—F_I—* |stochastic filter|
|error sub space filter|
\ |suboptima| scheme|
. - (e oo
1980
1990 Ensemble Filters
[E-KE]
EnKF
- A Y UKF
|stochastic EnKF SEIK SEEK| [RRSQRT
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Local |Zat|0n Data Assimilation

Framework

forecast global filter local filter x10712

£ e
= B
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XS z
<]
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\/

spurious long-range correlations
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Domain Localization PDAFeasie

Data Assimilation
Framework

« subdivide model into disjoint sub-domains
« update each sub-domain individually taking only observations within specific
distance into account

grid cell 5/

3x3 sub-domain

location of observation
/

center of sub-domain ———s . o | e

<€ cut-off radius

sub domain within sphere
of observation
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Covariance Localization Dt Ao

* Multiply covariance matrix of

forecasted state with finite S S e
. . 09F "\ R : Sioiiii|lo - GCis1, am1/2, c=50 |-
covariance function N v [ Gortieoz o0 |
. O7F \
5 osf S :\\\ _
properties of auto covariance functions B ooaf o h\Y
« positive semi-definite sosr N
o [f(x)| < f(0) of oLt
° f(-X) — f(X) 0L

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Moreuax (2008) Radial distance [km]
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Inflation

* True variance is always underestimated
» small ensemble size
» sampling errors (unknown structure of P)
* model errors

= can lead to filter divergence

« Simple remedy
= Increase error estimate before analysis

« Inflation
» Increase ensemble spread by constant factor
« Some filters allow multiplication of a small matrix
* Needs to be experimentally tuned

19 Apr 2024 SC5.12 Getting Started with Data Assimilation: Theory and Application

PDAFParaIIeI

Data Assimilation
Framework

19



Co-Estimation of Model Dynamics PDAFraae

Data Assimilation

(Model Calibration) Framework

19 Apr 2024

augment state vector with model parameters

state

3.

X
C

!

model parameters
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Coastal Ocean DA

Improving forecasts of ocean physics and biogeochemistry

Model domain: North Sea and Baltic Sea

1.8km resolution, 56 layers
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Surface temperature:
RMSe in Baltic Sea

Black: no DA | SST

Blue: 1-day forecasts

Red: analysis
Green: 14-day forecasts | CHL

Chlorophyill:
Log10-RMSe
in Baltic Sea
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X . e §
H G S - P DA F !:!e!l!!:u‘cg. %,\ ( gg;\élersnat WATERAGRI Framework

Faculté des sciences

A modular data assimilation framework for an integrated surface and
subsurface hydrological model

ol h
1.0 1 s_s hsk_h

Depth to groundwater hs_h hs_hs hsk_s
(GW) table (m) 7 O 0.8+

5 - B

< . S 06

2 /."' é\v $ .

3 X > 0.4

25 5

B £

1:5 : -

4 % Observation wells DG:J 0.2

05 ® Pumping wells 0.0

== Stream location

Scenarios
Critical-depth BC < ‘I '0 -
= 081
(@)
buried paleo- S 06 - hsk_hs
channel structure g hsk
(500 m/d K iso- sk s
surface) = E 0.4 4 hs h hs hs hS_S —
= a _ _
é 0.2 -
0.0 4

Scenarios

Tang et al. (2023): HGS-PDAF (version 1.0): A modular data assimilation framework for an integrated surface and subsurface hydrological model, Geosci. Model Dev. Discuss.
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AWI-CM-PDAF

A data assimilation framework for coupled ocean-atmosphere models

(a)Free_run-ERA (b)WCDA-ERA

-\ A
r-'%,,\

150

B
]

fluxes

-

ocean/ice state

Resolution [km]

Temperature, K Temperature, K

> (c)SCDA-ERA (d)SCDA_vert-ERA

Atmosphere Coupler library Ocean
ECHAM®G OASIS3-MCT FESOM
JSBACH land includes sea ice

Temperature, K Temperature, K

Nerger et al. (2020): Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0), Geosci. Model Dev.
Tang et al. (2021): Strongly coupled data assimilation of ocean observations into an ocean-atmosphere model. Geophysical Research Letters
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TerrSysMP—-PDAF e mework

Framework

a modular high-performance data assimilation framework for an integrated land
surface—subsurface model

Open loop
wn n wn wn
™ 4 ™ 4 ™ ™
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Kurtz et al. (2016): TerrSysMP—PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surface—subsurface model, Geosci. Model Dev.
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DEnKF on a Lagrangian sea ice model

OSISAF

T 1.00

0.80

0.60 ¢y
—
0.40 a

0.20

0.00

Free Run

SIC1-SIT7

Reduction in seaice extent bias

(green:obs., red:forecast)

Cheng, S., Chen, Y., Aydogdu, A., Bertino, L., Carrassi, A, Rampal, P., and Jones, C. K. R. T.: Arctic sea ice
data assimilation combining an ensemble Kalman filter with a novel Lagrangiansea ice model for the
winter 2019-2020, The Cryosphere, 17, 1735-1754, https://doi.org/10.5194/tc-17-1735-2023, 2023.
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SIT RMSD (m)
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Improved sea ice thickness estimates

By =@)» SCHMIDT FUTURES ‘

SC5.12 Getting Started with Data Assimilation: Theory and Application

National Centre for
Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL
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Joint state and parameter estimation for sea ice model PDAFearaie

Data Assimilation

, _ _ _ a) C Framework
» |dealised experiment on parameter estimation for a 3.0e-03 a
dynamics-only Arctic sea ice model 2.5e-031
2.0e-031
 Two parameters are estimated: 1.56-03
« Air drag coefficient () - determines the influence of 1.0e-031
wind on the sea ice motion 5.0e-04
« Damage parameter (a) — determines the transition
between elastic-brittle solid to viscous fluid behaviour
SRALKZ g
“\‘w“"” Days
NN — siIc — SIv SIC+SIV SIC+SIT+SIV  ——- truth
Yay>” SIT —— SIC+SIT SIT+SIV  ——- forecast ——- threshold spread

» Estimation can get close to the truth

« Someissues exist

iversi — National C fe
Chen, Y., Smith, P., Carrassi, A, Pasmans, ., Bertino, L., Bocquet, M., Finn, T. S., Rampal, P., and Dansereau, V.: @ URTESE'%‘; :. SCHMIDT FUTURES @ Enrch Observation.

Multivariate state and parameter estimation with data assimilation on sea-ice models using a Maxwell-Elasto-Brittle
rheology, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1809, 2023.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
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NCAR TIE-GCM PDAF
Improving neutral mass density estimation in upper atmosphere

1 NRLMSIS2.0-acc. [1 open loop simulation-acc.
[ calibrated NRLMSIS2.0-acc. [1 assimilation run-acc.

0.04 {CHAMP

0.02 1

relative frequency ()

0.00 -
—6 —4 -2 0 2 4 6

oo x 10715
neutral density difference (C—rgn—g)

.

Q

=)
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=

S

&)

£

=

R

b
Corbin, A. & Kusche, J. Improving the estimation of thermospheric neutral 2' ?')
density via two-step assimilation of in situ neutral density into a numerical ) ) %1016
model. Earth, Planets and Space 74, 183 (2022). neutral density difference (_g_crn3)
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https://visibleearth.nasa.gov/images/73701/may-blue-marble-next-generation-w-topography-and-bathymetry
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Building a DA system P ek

*We will use PDAF to build a simple data assimilation system E.E_:'H.E

« Website: E

https://pdaf.awi.de/trac/wiki

O30
Multiple choices of

DA schemes B

No need to worry
about DA
implementation

Efficient, reliable,
flexible for
ensemble DA

Focusing on Github repo: E
scientific problems https://github.com/PDAF/PDAF
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PDAFeraaie
pyPDAF — A Python interface to PDAF > ~zniri:

%
git repository:

https://github.com/yumengch/pypdaf

PDAF pyPDAF
(Fortran) (Python)

I gtensllve codte ngh-dlr?ensmnal Less EaS|er code
evelopmen sysiems eff|C|ent development

19 Apr 2024 SC5.12 Getting Started with Data Assimilation: Theory and Application

Fortran models/
Offline DA




Overview of DA system

Collect User supplied routines Distribute
state vector PP state vector

PDAF/pyPDAF

User supplied routines

Observation handling
e Number of observations
e Read observation data

e Postprocess ensemble

e Set number of model
time steps for next
assimilation

Preprocess
ensemble

e Observation error
e Observation operator

19 Apr 2024
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Forecasts and their
uncertainties

Observations and
their uncertainties
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Hands-on example Pt A

https://tinyurl.com/2p938fne  » The jupyter notebook can be run directly in Google colab

19 Apr 2024

« If you download the jupyter notebook on your local
computer, you can also install pyPDAF and jupyter
notebook with conda using

conda install -c yumengch -c conda-forge pypdaf jupyter

and running jupyter notebook from the terminal with
Jjupyter notebook
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