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Schedule

I Theory (25 min) II Applications (20 min) III Hands-on (45 min)
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I Theory
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Data Assimilation (DA)
Data assimilation (DA) is the science of combining
observations of a system, including their
uncertainty, with estimates of that system from a
dynamical model, including its uncertainty, to obtain a
new and more accurate description of the system
including an uncertainty estimate of that description.
Vetra-Carvalho et al. (2018)
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Adopted from Asch et al. (2016)
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Requirements for DA
1. Model

• With some skill

2. Observations
• With finite errors
• Related to model fields

3. Data assimilation method

NASA

https://science.nasa.gov/get-involved/toolkits/spacecraft-icons
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Observation Operator
observations observation errorsstate

observation operator: maps state to observation

Linearized Operator:
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Model Operator
model errorsstate

model/forward operator: propagates state from time s to t

Linearized Operator:
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Sequential and DASequential VariationalVariational
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Sequential Variational (4D Var)

state observation operator

observationsforecast
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Kalman filter is optimal

1. Linear model
2. Linear function between observations and state
3. State is normal distributed

Optimal: state is unbiased and has minimal variance
Assumptions:

1. everything is Gaussian 2. model and observation 
operator are linear

3. model errors are not 
correlated with state or 
observation errors
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Kalman Filter
1. Forecast/Prediction 2. Analysis/Update at time tk
State propagation

Propagation of error estimate

State update

Propagation of error estimate

with Kalman gain1. M explicitly required

2. Scales poorly with the size of the problem
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Large Scale Models

Dimension of 
state vector Required memory (double)

x P
1 000 000 8 MB 8 TB

10 000 000 80 MB 800 TB
100 000 000 800 MB 80 000 TB

Storing and multiplication of the 
covariance matrix of the state 
becomes too expensive

Combined memory of best super 
computer1 accumulates to 9 200 TB

1According to TOP500 List of Nov 2023

CC BY 2.0 OLCF at ORNL (cropped)

https://www.top500.org/lists/top500/2023/11/
https://creativecommons.org/licenses/by/2.0/
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Ensemble Kalman Filters

ensemble matrix
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Filters
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Localization
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Domain Localization
• subdivide model into disjoint sub-domains
• update each sub-domain individually taking only observations within specific 

distance into account

3x3 sub-domain

center of sub-domain

location of observation

grid cell

cut-off radius

sub domain within sphere
of observation
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Covariance Localization

properties of auto covariance functions
• positive semi-definite
• f(0) ≥ 0
• |f(x)| ≤ f(0)
• f(-x) = f(x)

Moreuax (2008)

• Multiply covariance matrix of 
forecasted state with finite 
covariance function
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Inflation
• True variance is always underestimated

• small ensemble size
• sampling errors (unknown structure of P)
• model errors

➜ can lead to filter divergence

• Simple remedy
➜ Increase error estimate before analysis

• Inflation
• Increase ensemble spread by constant factor
• Some filters allow multiplication of a small matrix
• Needs to be experimentally tuned
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Co-Estimation of Model Dynamics
(Model Calibration)

augment state vector with model parameters

state

model parameters
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II Applications
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Coastal Ocean DA
Improving forecasts of ocean physics and biogeochemistry

Chlorophyll: 
Log10-RMSe 
in Baltic Sea

Surface temperature:
RMSe in Baltic Sea

Black: no DA
Blue: 1-day forecasts

Red: analysis
Green: 14-day forecasts

SST

CHL

Model domain: North Sea and Baltic Sea
1.8km resolution, 56 layers
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HGS-PDAF
A modular data assimilation framework for an integrated surface and 
subsurface hydrological model 
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Tang et al. (2023): HGS-PDAF (version 1.0): A modular data assimilation framework for an integrated surface and subsurface hydrological model, Geosci. Model Dev. Discuss.
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AWI-CM-PDAF  
A data assimilation framework for coupled ocean-atmosphere models

Nerger et al. (2020): Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0), Geosci. Model Dev.
Tang et al. (2021): Strongly coupled data assimilation of ocean observations into an ocean-atmosphere model. Geophysical Research Letters



SC5.12 Getting Started with Data Assimilation: Theory and Application19 Apr 2024 25

TerrSysMP–PDAF
a modular high-performance data assimilation framework for an integrated land 
surface–subsurface model

Kurtz et al. (2016): TerrSysMP–PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surface–subsurface model, Geosci. Model Dev.
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DEnKF on a Lagrangian sea ice model

Cheng, S., Chen, Y., Aydoğdu, A., Bertino, L., Carrassi, A., Rampal, P., and Jones, C. K. R. T.: Arctic sea ice 
data assimilation combining an ensemble Kalman filter with a novel Lagrangiansea ice model for the 
winter 2019–2020, The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023, 2023.
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Joint state and parameter estimation for sea ice model
• Idealised experiment on parameter estimation for a 

dynamics-only Arctic sea ice model

• Two parameters are estimated:
• Air drag coefficient () - determines the influence of 

wind on the sea ice motion
• Damage parameter (α) – determines the transition 

between elastic-brittle solid to viscous fluid behaviour

Chen, Y., Smith, P., Carrassi, A., Pasmans, I., Bertino, L., Bocquet, M., Finn, T. S., Rampal, P., and Dansereau, V.: 
Multivariate state and parameter estimation with data assimilation on sea-ice models using a Maxwell-Elasto-Brittle 
rheology, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1809, 2023.
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NCAR TIE-GCM PDAF
Improving neutral mass density estimation in upper atmosphere

Corbin, A. & Kusche, J. Improving the estimation of thermospheric neutral 
density via two-step assimilation of in situ neutral density into a numerical 
model. Earth, Planets and Space 74, 183 (2022).

Image of Earth: Reto Stöckli, NASA Earth Observatory

https://visibleearth.nasa.gov/images/73701/may-blue-marble-next-generation-w-topography-and-bathymetry
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III Hands On
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Building a DA system
•We will use PDAF to build a simple data assimilation system

Website: 
https://pdaf.awi.de/trac/wiki

Github repo: 
https://github.com/PDAF/PDAF

https://pdaf.awi.de/trac/wiki
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pyPDAF – A Python interface to PDAF

git repository: 
https://github.com/yumengch/pypdaf
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Overview of DA system
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Hands-on example

• The jupyter notebook can be run  directly in Google colab

• If you download the jupyter notebook on your local 
computer, you can also install pyPDAF and jupyter 
notebook with conda using
conda install -c yumengch -c conda-forge pypdaf jupyter

and running jupyter notebook from the terminal with
jupyter notebook

https://tinyurl.com/2p938fne
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