
PDAF Tutorial

Implementation of the analysis step

in online mode with a parallel model
using PDAF’s full interface

http://pdaf.awi.de

V2.0 – 2025-05-09

PDAF tutorial – Analysis step in online mode with a parallel model

We demonstrate the implementation

of an offline analysis step with PDAF

using the template routines provided by PDAF

The example code is part of the PDAF source code package
downloadable at http://pdaf.awi.de

(This tutorial is compatible with PDAF V3.0 and later)

Please note:

The implementation variant described here is rather for reference with
older implementations or can be considered as an expert-mode.

We recommend to base any new implementation on using the PDAF3
interface that was introduced in PDAF V3.0. Please see the tutorial.

Implementation Tutorial for PDAF online with serial model

http://pdaf.awi.de/

PDAF tutorial – Analysis step in online mode with a parallel model

Implementation Tutorial for PDAF online / parallel model

This is just an example!

For the complete documentation of PDAF’s interface

see the documentation

at http://pdaf.awi.de

PDAF tutorial – Analysis step in online mode with a parallel model

Overview

Focus on Error Subspace Transform Kalman Filter
(ESTKF, Nerger et al., Mon. Wea. Rev. 2012)

4 Parts
a) Global filter b) Localized filter

We recommend to first implement the global filter. The localized
filter re-uses routines of the global filter.

In this tutorial we only cover the case of a parallel model.
The implementation using a model without parallelization is
described in a separate tutorial.

PDAF tutorial – Analysis step in online mode with a parallel model

Contents

0a) Files for the tutorial 6

0b) The model with parallelization 10

0c) State vector and observation vector 13

0d) PDAF online mode 16

0e) Inserting subroutine calls 22

0f) Forecast phase 32

1a) Global filter 43

1b) Local filter 61

2) Hints for adaptions for real models 90

PDAF tutorial – Analysis step in online mode with a parallel model

0a) Files for the Tutorial

PDAF tutorial – Analysis step in online mode with a parallel model

Tutorial implementation

Files are in the PDAF package

Directory:

/tutorial/classical/online_2D_parallelmodel

• Fully working implementations of user codes

• PDAF core files are in /src
Makefile refers to it and compiles the PDAF library

• Only need to specify the compile settings (compiler, etc.) by
environment variable PDAF_ARCH. Then compile with ‘make’.

PDAF tutorial – Analysis step in online mode with a parallel model

Template files for online mode

Directory: /templates/online

• Contains all required files

• Contains also
command line parser
(convenient but not required)

To generate your own implementation:
1. Copy content of directory

e.g. into sub-directory of model source code
2. Add calls to interface routines to model code
3. Complete user-routines for your model
4. Adapt compilation (e.g. Makefile) and compile
5. Run with assimilation options

PDAF tutorial – Analysis step in online mode with a parallel model

PDAF library

PDAF tutorial – Analysis step in offline mode

Directory: /src

• The PDAF library is not part of the template
• PDAF is compiled separately as a library

and linked when the assimilation program is compiled
• Makefile includes a compile step for the PDAF library
• One can also cd to /src and run ‘make’ there

(requires setting of PDAF_ARCH)

$PDAF_ARCH

• Environment variable to specify the compile specifications
• Definition files in /make.arch
• Define by, e.g.

setenv PDAF_ARCH linux_gfortran (tcsh/csh)
export PDAF_ARCH=linux_gfortran (bash)

PDAF tutorial – Analysis step in online mode with a parallel model

0b) The parallelized model

PDAF tutorial – Analysis step in online mode with a parallel model

2D „Model“

• See the separate tutorial slides about the model

• Simple 2-dimensional grid domain

• 36 x 18 grid points (longitude x latitude)

• True state: sine wave in diagonal direction
(periodic for consistent time stepping)

PDAF tutorial – Analysis step in online mode with a parallel model

Parallel Model: Files

The source code of the parallel model consists of the following files:
• mod_model.F90
• mod_parallel_model.F90
• main.F90
• initialize.F90
• integrate.F90

Note: One can nicely compare the source codes of the model without
and with parallelization

For clarity, the implementation with PDAF is found in

• main_pdaf.F90

• integrate_pdaf.F90

It allows for easy comparison of the implementations

PDAF tutorial – Analysis step in online mode with a serial model

0c) state vector and observation vector

PDAF tutorial – Analysis step in online mode with a parallel model

State vector – some terminology used later

• PDAF performs computations on state vectors

• State vector
• Stores model fields in a single vector
• Tutorial shows this for one 2-dimensional field
• Multiple fields are just concatenated into the vector
• All fields that should be modified by the assimilation have to be

in the state vector

• State dimension
• Is the length of the state vector

(the sum of the sizes of the model fields in the vector)

• Ensemble array
• Rank-2 array which stores state vectors in its columns

PDAF tutorial – Analysis step in online mode with a parallel model

Observation vector

• Observation vector
• Stores all observations in a single vector
• Tutorial shows this for one 2-dimensional field
• Multiple observed fields are just concatenated into the vector

• Observation dimension
• Is the length of the observation vector

(sum of the observations over all observed fields in the vector)

• Observation operator
• Operation that computes the observed part of a state vector
• Tutorial only selects observed grid points
• The operation can involve interpolation or integration

depending on type of observation

PDAF tutorial – Analysis step in online mode with a parallel model

0c) PDAF online mode

PDAF tutorial – Analysis step in online mode with a parallel model

Online mode

• Combine model with PDAF into single program

• “model_pdaf”

• Add 3 subroutine calls:
init_parallel_pdaf - revise parallelization
init_pdaf - initialize assimilation
assimilate_pdaf - perform assimilation

• Implement user-supplied routines, e.g. for
• observation operator
• initialization of observation vector
• transfer between state vector and model fields

PDAF tutorial – Analysis step in online mode with a parallel model

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Do i=1, nsteps

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing
Model

Extension for
data assimilation

Aaaaaaaa

Aaaaaaaa

aaaaaaaa
a

Start

Stop

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

init_parallel_pdaf

Do i=1, nsteps

init_pdaf

assimilate_pdaf

Simulation Model Assimilation System

Legend

Initialize MPI
Initialize MPI

Program flow with model extended for data assimilation

PDAF tutorial – Analysis step in online mode with a parallel model

Fully parallel configuration

• Tutorial shows implementation for a fully parallel case

➜ Number of processes equals ensemble size times
number of processes used for a single model task!

• For a more flexible (and complicated) configuration see
PDAF’s online guide

PDAF tutorial – Analysis step in online mode with a parallel model

model_pdaf: General program structure

program main_pdaf

init_parallel_pdaf - initialize parallelization

initialize - initialize model information

init_pdaf - initialize parameters for PDAF
and read ensemble

integrate - time stepping loop

assimilate_pdaf - compute analysis step
(called inside stepping loop)

end program

Note:
In the example code, we use different files main.F90 and
main_pdaf.F90 to allow for easy comparison

PDAF tutorial – Analysis step in online mode with a parallel model

mod_assimilation.F90

Fortran module

• Declares the parameters used to configure PDAF

• Will be included (with ‘use’) in the user-written routines

• Additions to template necessary for observation handling

PDAF tutorial – Analysis step in online mode with a parallel model

0d) Inserting subroutine calls

PDAF tutorial – Analysis step in online mode with a parallel model

Where to insert subroutine calls?

init_parallel_pdaf

➜ at the start of the program, but after the MPI_Init performed
in the code of the parallel model

init_pdaf

➜ after the initialization of the model
i.e. directly before the time stepping loop

assimilate_pdaf

➜ Last operation in the time stepping loop
i.e. just before the ‘END DO’

Note: One can add the routines one after the other:
First insert init_parallel_pdaf and test the program, then add
init_pdaf, etc.

PDAF tutorial – Analysis step in online mode with a parallel model

init_parallel_pdaf.F90

• It is fully implemented template usable with small adaptions

• Required adaptions

• Include MPI variables from module of the model:
MPI_COMM_WORLD, COMM_model, mype_model, npes_model
(the latter three variables might be named differently in a model)

• init_parallel_pdaf defines a model communicator
comm_model
(actually it’s a set for communicators, one for each model task)

• Set communicator of the parallel model to comm_model at the end
if init_parallel_pdaf:
“my_models_communicator” = comm_model
(include my_models_communicator from module of model)

• Set variables for number of processes in model and rank of a
process (npes_model, mype_model) at end of routine

PDAF tutorial – Analysis step in online mode with a parallel model

init_parallel_pdaf.F90 (2)

• Parallelization variables for PDAF are declared in Fortran
module

mod_parallel_pdaf

• Important variable:

n_modeltasks

• Defines number of concurrent model integrations.

• Has to be equal to ensemble size

• In the example: Read as ‘dim_ens’ from command line
(using subroutine ‘parse’)

• Important: If the parallel model uses MPI_COMM_WORLD, this
has to be replaced! (MPI_COMM_WORLD denotes always all
processes in the program)

PDAF tutorial – Analysis step in online mode with a parallel model

init_parallel_pdaf.F90 (3) - Example

The routine initializes 3 groups of communicators
• COMM_model: Used to run the parallel model forecasts
• COMM_filter: Used to compute the filter
• COMM_couple: Coupling between model and filter processes
These are provided to PDAF when calling PDAF_init

The figure shows an example
• 12 processes in total
• 3 model tasks in parallel
• Each model task uses 4

processes in its COMM_model
• Each COMM_couple links groups

of 3 processes to distribute and
collect ensemble states

• The filter processes use model task 1

init_parallel_pdaf is coded to provide this configuration when
running with 12 processes and setting dim_ens=3

PDAF tutorial – Analysis step in online mode with a parallel model

init_pdaf.F90

Routine sets parameters for PDAF, calls PDAF_init
to initialize the data assimilation, and calls PDAF_get_state to
prepare the ensemble integrations:

Template contains list of available parameters
(declared in and used from mod_assimilation)

Independent of the filter algorithm:
• Include information on size of model fields from model
• Define dimension of decomposed state vector

dim_state_p = nx_p * ny

In call to PDAF_init, the name of the user-supplied routine for
ensemble initialization routine is specified:

init_ens_pdaf

PDAF tutorial – Analysis step in online mode with a parallel model

init_pdaf.F90 (II)

In call to PDAF_get_state, the names of 3 user-supplied routines
are specified:

next_observation_pdaf
- Set number of time steps
in forecast phase

distribute_state_pdaf
- Initialize model fields from state

vector

prepoststep_ens_pdaf
- poststep routine (compute estimated
errors, write state estimate, etc.)

Initially, one can just copy the template routines. One can adapt
them later to the particular application.

PDAF tutorial – Analysis step in online mode with a parallel model

assimilate_pdaf.F90

Routine just calls a filter-specific routine like

PDAF_assimilate_estkf

We don’t insert PDAF_assimilate_estkf directly into the model
code

➜ because, we need to declare all user-supplied routines as
‘EXTERNAL’. This could clutter the model code.

Filter-specific user routines are described next. Initially, one can just
copy the template routines.

Note: Template contains calls for PDAF_assimilate_estkf and
PDAF_assimilate_lestkf. Need to adapt for other filters

PDAF tutorial – Analysis step in online mode with a parallel model

Differences online and offline

• If you’ve studied the tutorial for offline mode

Offline
• Separate programs for

model and assimilation
• Needed to implement

routine intialize

• Grid dimensions declared in
mod_assimilation

• Ensemble information read
from files

• mod_assimilation
contains all field and
assimilation variables

Online
• Extend model program for

assimilation
• Operations in initialize

given by model; no changes
for assimilation!

• Grid dimensions defined in
model code (mod_model)

• Ensemble information
provided by model fields

• mod_assimilation only
contains variables for
assimilation

PDAF tutorial – Analysis step in online mode with a parallel model

Optional routine: finalize_pdaf.F90

Call to finalize_pdaf can be inserted at the end of the model

Routine contains two calls to PDAF_print info:

CALL PDAF_print_info(2)

– display information on allocated memory inside PDAF

CALL PDAF_print_info(1)

– display timing information
(values 3 and 4 also possible for more detailed timers)

Note: finalize_pdaf only prints the information for mype_world==0

In addition there is

CALL PDAF_deallocate()

which deallocates internal arrays in PDAF

PDAF tutorial – Analysis step in online mode with a parallel model

0e) Forecast phase

PDAF tutorial – Analysis step in online mode with a parallel model

Files for PDAF

Template contains all required files

 just need to be filled with functionality

init_pdaf.F90

init_ens_pdaf.F90

next_observation_pdaf.F90

distribute_state_pdaf.F90

collect_state_pdaf.F90

init_dim_obs_pdaf.F90

obs_op_pdaf.F90

init_obs_pdaf.F90

prodrinva_pdaf.F90

prepoststep_ens_pdaf.F90

initialization

analysis step

ensemble
forecast

PDAF tutorial – Analysis step in online mode with a parallel model

init_pdaf.F90

Routine sets parameters for PDAF and calls PDAF_init
to initialize the data assimilation:

Template contains list of available parameters
(declared in and used from mod_assimilation)

For the example set :

1. dim_ens = 9

2. rms_obs = sqrt(0.5)

3. filtertype = 6 (for ESTKF)

4. delt_obs = 2 (assimilate afer each 2nd time step)

In call to PDAF_init, the name of the ensemble initialization routine
is specified:

init_ens_pdaf

PDAF tutorial – Analysis step in online mode with a parallel model

init_ens_pdaf.F90

A call-back routine called by PDAF_init:

• Implemented by the user
• Its name is specified in the call to PDAF_init
• It is called by PDAF through a defined interface:

SUBROUTINE init_ens_pdaf(filtertype, dim_p,
dim_ens, state_p, Uinv, ens_p, flag)

Declarations in header of the routine shows “intent” (input, output):

REAL, INTENT(out) :: ens_p(dim_p, dim_ens)

Note:
All call-back routines have a defined interface and show the intent of
the variables. Their header comment explains what is to be done in
the routine.

PDAF tutorial – Analysis step in online mode with a parallel model

init_ens_pdaf.F90 (2)

Initialize ensemble matrix ens_p for the start time of the assimilation

1. Include nx, ny, nx_p with use mod_model

2. Declare and allocate real :: field(ny, nx)

3. Loop over ensemble files (i=1,dim_ens)

for each file:

• read ensemble state into field

• store local part of field in column i of ens_p
(columns nx_p*mype_model+1 : nx_p*mype_model+nx_p)

4. Deallocate field

Note:
Columns of ens_p are state vectors. Store following
storage of field in memory (column-wise in Fortran)

PDAF tutorial – Analysis step in online mode with a parallel model

The forecast phase

At this point the initialization of PDAF is complete:
• Initial Ensemble of model states is initialized
• Filter algorithm and its parameters are chosen

Next:

• Implement user-routines for forecast phase

• All are call-back routines:

 User-written, but called by PDAF

Note:
Some variables end with _p.
It means that the variable is specific for a process
(its values are different for each process)

PDAF tutorial – Analysis step in online mode with a parallel model

next_observation_pdaf.F90

Routine to

• Set number of time steps in next forecast phase

• Set flag to control exit from forecasts (doexit)

Most simple setting:

include delt_obs from mod_assimilation

nsteps = delt_obs

doexit = 0

Note: The assimilation program stops when the maximum number
of time steps of the model is reached, even if doexit=0

PDAF tutorial – Analysis step in online mode with a parallel model

next_observation_pdaf.F90 (II)

More sophisticated setting:
• Utilize stepnow (current time step) and total_steps

(total number of time steps given by model).

IF (stepnow + nsteps <= total_steps) THEN

nsteps = delt_obs ! Forecast length
doexit = 0 ! Continue assimilation

ELSE

nsteps = 0 ! No more steps
doexit = 1 ! Exit assimilation

END IF

Note: In the example doexit=1 is used only inside PDAF and
avoids some screen output.

PDAF tutorial – Analysis step in online mode with a parallel model

distribute_state_pdaf.F90

Routine to

• Initialize model fields from a state vector

• Routine is provided with the state vector vector_p

For the example:

1. Access nx_p, ny and field_p with use
mod_model

2. Initialize model field from state vector:

DO j = 1, nx_p

field_p(1:ny, j) = state_p(1+(j-1)*ny : j*ny)

END DO

PDAF tutorial – Analysis step in online mode with a parallel model

prepoststep_ens_pdaf.F90

Post-step routine for the online mode:

Already there in the template:
1. Compute ensemble mean state state_p
2. Compute estimated variance vector variance
3. Compute estimated root mean square error rmserror_est

Possible extensions:

4. Write analysis state (ensemble mean, state_step*_ana.txt)

5. Write analysis ensemble into files
(Analogous to reading in init_ens_pdaf)

6. Analogously one can write the forecast fields

PDAF tutorial – Analysis step in online mode with a parallel model

Completion of forecast phase

At this point the implementation of the forecast phase is practically
complete:

• Initial ensemble and PDAF’s parameters are set
• The ensemble forecast can be computed

One can now compile the program model_pdaf (make model_pdaf)
to check whether it runs.
Note: It is recommended to compile PDAF with –
DPDAF_NO_UPDATE at this point as the routine for the analysis
step are not yet implemented.

Note: For now, prepoststep_ens_pdaf only lets you test the
initial ensemble. Testing the forecast fields need implementation of
routine collect_state_pdaf

PDAF tutorial – Analysis step in online mode with a parallel model

1a) Global filter

PDAF tutorial – Analysis step in online mode with a parallel model

Running the tutorial program

• cd to /tutorial/classical/online_2D_serialmodel

• Set environment variable PDAF_ARCH or set it in Makefile
(e.g. linux_gfortran_openmpi)

• Compile by running ‘make model_pdaf’
(next slide will discuss possible compile issues)

• Run the program with
mpirun –np 18 ./model_pdaf –dim_ens 9

• Inputs are read in from /tutorial/inputs_online

• Outputs are written in
/tutorial/classical/online_2D_parallelmodel

• Plot result, e.g. with ‘octave’:

load state_step10_ana.txt

pcolor(state_step10_ana)

PDAF tutorial – Analysis step in online mode with a parallel model

Requirements for compiling PDAF

PDAF requires libraries for BLAS and LAPACK

• Libraries to be linked are specified in the include file for make
in /make.arch (file according to PDAF_ARCH)

• For $PDAF_ARCH=linux_gfortran_openmpi the specification is

LINK_LIBS =-L/usr/lib -llapack -lblas -lm

• If the libraries are at another non-default location, one has to change
the directory name (/usr/lib)

• Some systems or compilers have special libraries
(e.g. MKL for ifort compiler, or ESSL on IBM/AIX)

PDAF needs to be compiled for double precision

• Needs to be set at compiler time in the include file for make:

• For gfortran: OPT = -O3 -fdefault-real-8

PDAF tutorial – Analysis step in online mode with a parallel model

Files in the tutorial implementation

/tutorial/inputs_online

• true_stepY.txt true state

• state_ini.txt initial estimate (ensemble mean)

• obs_stepY.txt observations

• ens_X.txt initial ensemble members

/tutorial/classical/online_2D_parallelmodel
(after running model_pdaf)

• state_stepY_ana.txt analysis state estimate

• ens_X_stepY_ana.txt analysis ensemble members

X=1,…,9: ensemble member index

Y=1,…,18: time step index

Note: Files *_for.txt contain forecast fields

PDAF tutorial – Analysis step in online mode with a parallel model

Result of the global assimilation

For example, at step 10

• The analysis state (center) is closer to the true field than without
assimilation (left)

• Truth and analysis are nearly identical (right)

PDAF tutorial – Analysis step in online mode with a parallel model

The analysis step

Next: Implement user-routines for the analysis step

The analysis step needs several user-supplied routines
for operations like

• write forecast model fields into state vector

• determine number of available observations

• observation operator acting on a state vector

• initialization of the vector of observations

PDAF tutorial – Analysis step in online mode with a parallel model

collect_state_pdaf.F90

Routine to

• Fill state vector with forecasted model fields

• Routine is provided with the state vector vector_p

For the example:

1. Access nx, ny and field with use mod_model

2. Initialize state vector from model field:
DO j = 1, nx_p

state_p(1+(j-1)*ny : j*ny) = field_p(1:ny, j)

END DO

Note: The routine is independent of the filter!

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_pdaf.F90

Routine to

• read observation file

• Count number of observations for process-local part
of state vector (direct output to PDAF: dim_obs_p)

Optional, also

• Initialize array holding process-local available
observations

• Initialize index array telling index of observation point
in process-local state vector

The most complicated routine in the example!
(but only 123 lines)

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_pdaf.F90 (2)

Preparations and reading of observation file:
1. Include nx, ny, nx_p with use mod_model
2. declare and allocate real array obs_field(ny, nx)

3. Get offset of local part in global state vector
off_p = Sum over nx_p*ny up to i=mype_filter

4. read observation file for current time step:

Initialize string ‘stepstr’ for time step

OPEN (12, &
file='inputs_online/obs’//stepstr//’.txt’, &
status='old')

DO i = 1, ny
READ (12, *) obs_field(i, :)

END DO
CLOSE (12)

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_pdaf.F90 (3)

Count available process-local observations (dim_obs_p):

1. Declare integer :: cnt0, cnt_p

2. Now count

cnt0 = 0
cnt_p = 0
DO j = 1, nx

DO i= 1, ny
cnt0 = cnt0 + 1
IF (cnt0>off_p .AND. cnt0<=off_p+nx_p*ny) THEN

IF (obs_field(i,j) > -999.0) cnt_p = cnt_p + 1
END IF; END DO; END DO
dim_obs_p = cnt_p

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_pdaf.F90 (4)

Initialize observation vector (obs_p)
and index array (obs_index_p):

1. Include obs_p and obs_index_p
with use mod_assimilation

2. Allocate
obs_p(dim_obs_p), obs_index_p(dim_obs_p)
(If already allocated, deallocate first)

3. Now initialize …

Note:
The arrays only contain information about valid observations;
one could store observations already in files in this way.

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_pdaf.F90 (5)

Initialize obs and obs_index

cnt0 = cnt_p = cnt0_p = 0 ! Count grid points
DO j = 1, nx

DO i= 1, ny
cnt0 = cnt0 + 1
IF (cnt0>off_p .AND. &

cnt0<=off_p+nx_p*ny) THEN
cnt0_p = cnt0_p + 1

IF (obs_field(i,j) > -999.0) THEN
cnt_p = cnt_p + 1
obs_index_p(cnt_p) = cnt0_p ! Index
obs_p(cnt_p) = obs_field(i, j) ! observations

END IF; END IF
END DO

END DO

PDAF tutorial – Analysis step in online mode with a parallel model

obs_op_pdaf.F90

Implementation of observation operator
acting one some state vector

Input: state vector state_p

Output: observed state vector m_state_p

1. Include obs_index_p by use mod_assimilation

2. Select observed grid points from state vector:

DO i = 1, dim_obs_p

m_state_p(i) = state_p(obs_index_p(i))

END DO

Note:
dim_obs_p is an input argument of the routine

PDAF tutorial – Analysis step in online mode with a parallel model

init_obs_pdaf.F90

Fill PDAF’s observation vector

Output: vector of observations observation_p

1. Include obs_p with use mod_assimilation

2. Initialize observation_p:

observation_p = obs_p

Note:
This is trivial, because of the preparations in init_dim_obs_pdaf!
(However, the operations needed to be separate, because PDAF
allocates observations_p after the call to init_dim_obs_pdaf)

PDAF tutorial – Analysis step in online mode with a parallel model

prodrinva_pdaf.F90

Compute the product of the inverse observation error covariance
matrix with some other matrix

• Input: Matrix A_p(dim_obs_p, rank)
• Output: Product matrix C_p(dim_obs_p, rank)

(rank is typically dim_ens-1)

1. Declare and initialize inverse observation error variance
ivariance_obs = 1.0 / rms_obs**2

2. Compute product:

DO j = 1, rank
DO i = 1, dim_obs_p

C_p(i, j) = ivariance_obs * A_p(i, j)
END DO

END DO

PDAF tutorial – Analysis step in online mode with a parallel model

Done!

The analysis step in online mode with the parallelized model is
fully implemented now

The implementation allows you now to use the global filter
ESTKF (ETKF and SEIK are usable by adding a call to the
corresponding routines PDAF_assimilate_X in assimilate_pdaf)

Not usable are EnKF and SEEK (The EnKF needs some other
user files und SEEK a different ensemble initialization)

PDAF tutorial – Analysis step in online mode with a parallel model

A complete analysis step

We now have a fully functional analysis step
- if no localization is required!

Possible extensions for a real application:

Adapt routines for

 Multiple model fields
➜ Store full fields consecutively in state vector

 Third dimension
➜ Extend state vector

 Different observation types
➜ Store different types consecutively in observation vector

 Other file type (e.g. binary or NetCDF)
➜ Adapt reading/writing routines

PDAF tutorial – Analysis step in online mode with a parallel model

Differences between online and offline modes

For the analysis step in online mode:

collect_state_pdaf - additional routine for online mode

init_dim_obs_pdaf - read from file for current time step;
include nx, ny from mod_model
instead of mod_assimilate

obs_op_pdaf - identical in online and offline modes

init_obs_pdaf - identical in online and offline modes

prodrinva_pdaf - identical in online and offline modes

PDAF tutorial – Analysis step in online mode with a parallel model

1b) Local filter with parallelized model

PDAF tutorial – Analysis step in online mode with a parallel model

Localization

Localization is usually required for high-dimensional systems

• Update small regions (S)
(e.g. single grid points, single vertical columns)

• Consider only observations within cut-off distance (D)

• Weight observations according to distance from S

PDAF tutorial – Analysis step in online mode with a parallel model

The FULL observation vector

• A single local analysis at S (single grid point) need observations
from domain D

• A loop of local analyses over all S needs all observations

• This defines the full observation vector

• Why distinguish full and all observations?

➜ They can be different in case of parallelization!

• Example:

 Split domain in left and right halves

 Some of the analyses in left half
need observations from the right side.

 Depending on localization radius not all observations from
the right side might be needed for the left side analyses

PDAF tutorial – Analysis step in online mode with a parallel model

Running the tutorial program

• Compile as for the global filter
• Run the program with

mpirun –np 18 ./model_pdaf –dim_ens 9 OPTIONS

• OPTIONS are always of type –KEYWORD VALUE

• Possible OPTIONS are
-filtertype 7 (select LESTKF if not set in init_pdaf)
-cradius 5.0 (set localization radius, 0.0 by default, any

positive value should work)
-locweight 2 (set weight function for localization, default=0

for constant weight of 1; possible are integer
values 0 to 4; see init_pdaf)

Note: You can run the model e.g. using 18 MPI-processes even on most
computers with only 2 processor cores. However, to see a speedup in
computing time, you need more physical processors

PDAF tutorial – Analysis step in online mode with a parallel model

Result of the local assimilation

mpirun –np 9./model_pdaf –dim_ens 9 -filtertype 7

• Default: zero localization radius (cradius=0.0)

• Change only at observation locations

PDAF tutorial – Analysis step in online mode with a parallel model

Result of the local assimilation (2)

… -filtertype 7 -cradius 10.0

• All local analysis domains are influenced (all see observations)

• Up to 16 observations in a single local analysis (average 9.6)

Note: The set up of the experiment favors the global filter
because of the shape of the ensemble members

PDAF tutorial – Analysis step in online mode with a parallel model

Result of the local assimilation (2)

… -filtertype 7 -cradius 10.0 –locweight 2

• Observation weighting by 5th-order polynomial

• Analysis field is smoother than before (because of weighting)

PDAF tutorial – Analysis step in online mode with a parallel model

Result of the local assimilation (3)

… -filtertype 7 -cradius 40.0

• Large radius: All local analysis domains see all observations

• Result identical to global filter

PDAF tutorial – Analysis step in online mode with a parallel model

Local filter LESTKF

• Localized filters are a variant of the global filters

• User written files for global filter can be widely re-used

• Additional user-written files to handle local part

• No changes to:

initialize.F90

init_ens_pdaf.F90

prepoststep_ens_pdaf.F90

• Change in init_pdaf.F90:

Set filtertype = 7

(You can also set it later on command line)

PDAF tutorial – Analysis step in online mode with a parallel model

Local filter LESTKF (2)

Adapt files from global analysis

init_dim_obs_pdaf.F90 ➜ init_dim_obs_f_pdaf.F90

obs_op_pdaf.F90 ➜ obs_op_f_pdaf.F90

init_obs_pdaf.F90 ➜ init_obs_f_pdaf.F90

prodrinva_pdaf.F90 ➜ prodrinva_l_pdaf

Naming scheme:

f “full”: operate on all required observations
(without parallelization these are all observations)

l “local”: operation in local analysis domain or corresponding
local observation domain

PDAF tutorial – Analysis step in online mode with a parallel model

Local filter LESTKF (3)

Additional files for local analysis step

init_n_domains_pdaf.F90

init_dim_l_pdaf.F90

g2l_state_pdaf.F90

l2g_state_pdaf.F90

init_dim_obs_l_pdaf.F90

g2l_obs_pdaf.F90

init_obs_l_pdaf.F90

Discuss now the files in the order they are called

localize
state vector

localize
observations

PDAF tutorial – Analysis step in online mode with a parallel model

init_n_domains_pdaf.F90

Routine to set the number of local analysis domains

Output: n_domains_p
For the example: number of process-local grid points (nx_p * ny)

To do:
1. Include nx_p, ny with use mod_model

2. Set
n_domains_p = nx_p * ny

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_f_pdaf.F90

Operations in case of parallelization:
• Read observation file
• Count number of observations for process-local part of state

vector (dim_obs_p)
• Initialize arrays holding process-local available observations

(obs_p) and their coordinates (coords_obs_p)
• Initialize index array (obs_index_p) telling index of a process-

local observation in process-local state vector
• Initialize full number of observations (dim_obs_f), vector of

observations (obs_f), and coordinates (coords_obs_f)

“FULL” observation vector:
All observations required for all local analyses in process-local part
of state vector (Here: Full=All observations for simpicity)

Adapt init_dim_obs_pdaf from global filter …

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_f_pdaf.F90 (2)

Initialize coordinates of process-local observations

For the local filter:

1. Copy functionality from init_dim_obs_pdaf.F90
(In the subroutine definition take care that dim_obs_f is used
instead of dim_obs_p)

2. Include dim_obs_p with use mod_assimilation

3. Initialization of observation coordinates

a) Add allocatable REAL arrays coords_obs_p
and obs_p to the routine (don’t include obs_p from module)

b) In the loop where obs_p is set add
coords_obs_p(1, cnt_p) = REAL (j)
coords_obs_p(2, cnt_p) = REAL (i)

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_f_pdaf.F90 (3)

Initialize full quantities (dim_obs_f, obs_f, coords_obs_f)

1. Include allocatable arrays coords_obs_f and obs_f
with mod_assimilation

2. Obtain dim_obs_f by calling PDAF_gather_dim_obs_f

3. Allocate obs_f and coords_obs_f
(deallocate first if already allocated)

4. Obtain obs_f by calling PDAF_gather_obs_f

5. Obtain coords_obs_f by calling PDAF_gather_obs_f

6. Add DEALLOCATE for obs_p and coords_obs_p

Note: It is mandatory to call PDAF_gather_dim_obs_f once before using
the two other functions because it stores dimension information.
Note: The three PDAF functions have been added with PDAF Version
1.13 to avoid that the user implementation needs calls to MPI functions.
Note: coords_obs_f has to be a REAL array

PDAF tutorial – Analysis step in online mode with a parallel model

obs_op_f_pdaf.F90

Implementation of observation operator
for full observation domain

Difficulty:

• The state vector state_p is local to each process

• Full observed vector goes beyond process boundary

Implement two steps:

1. Initialize process-local observed state

2. Gather full observed state vector using MPI

PDAF tutorial – Analysis step in online mode with a parallel model

obs_op_f_pdaf.F90 (2)

1. Initialize process-local observed state m_state_p

a) Include dim_obs_p and obs_index_p
with use mod_assimilation

b) Declare real allocatable array m_state_p(:)

c) Allocate
m_state_p(dim_obs_p)

d) Fill the array

DO i = 1, dim_obs_p
m_state_p(i) = state_p(obs_index_p(i))

END DO

PDAF tutorial – Analysis step in online mode with a parallel model

obs_op_f_pdaf.F90 (3)

2. Get full observed state vector

a) Add variable INTEGER :: status

b) Add call to PDAF_gather_obs_f:

CALL PDAF_gather_obs_f(m_state_p, m_state_f, status)

c) Deallocate m_state_p

Note: It is mandatory to call PDAF_gather_dim_obs_f once before
using the two other functions because it stores dimension information.
Usually this was already done in init_dim_obs_f_pdaf

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_l_pdaf.F90

Set the vector size dim_l of the local analysis domain

Further set the coordinates of the local analysis domain and the
indices of the elements of the local state vector in the global state
vector

Each single grid point is a local analysis domain in the example

1. Set dim_l = 1

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_l_pdaf.F90 (2)

2. Determine coordinates of local analysis domain

1. Compute offset:

off_p = Sum over nx_p*ny up to i=mype_filter

2. Include coords_l with use mod_assimilation

3. Include nx, ny, nx_p with use mod_model

4. Compute coords_l from nx, ny:

coords_l(1)
= real(ceiling(real(domain_p + off_p)/real(ny)))

coords_l(2)
= real(domain_p + off_p) - (coords_l(1)-1)*ny

Note: With parallelization the domain numbering begins with 1 for each
process. For the coordinates we also need to count the domains from
processes with lower process rank using off_p

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_l_pdaf.F90 (3)

3. Set indices of the elements of the local state vector in the global
decomposed state vector

a) Include id_lstate_in_pstate
with use mod_assimilation

b) Allocate id_lstate_in_pstate(dim_l)
(Deallocate first if already alloced)

c) Specify the index: It’s identical to domain_p here
(because we only have a single model variable)

id_lstate_in_pstate(1) = domain_p

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_l_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Set the size of the observation vector for the local analysis domain

As for the global filter, this is the longest routine (~102 lines)

Only direct output: dim_obs_l

Operations:

1. Include coordinates coords_l with use mod_assimilation

2. Determine coordinate range for observations

3. Count observations within prescribed localization radius

4. Set index array for local observations (id_lobs_in_fobs) and array
of distances of local observations (distance_l)

Note: The index array in step 4 is re-used for an efficient implementation
of g2l_obs_pdaf. The local distance array initialized in step 4 is re-used in
prodrinva_l_pdaf avoiding to recompute distances.

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_l_pdaf.F90 (2)

2. Determine coordinate range for local observations
1. Declare real :: limits_x(2), limits_y(2)

2. Include cradius with use mod_assimilation

3. Set lower and upper limits. E.g. for x-direction

limits_x(1) = coords_l(1) - cradius
if (limits_x(1) < 1.0) limits_x(1) = 1.0
limits_x(2) = coords_l(1) + cradius
if (limits_x(2) > real(nx)) limits_x(2) = real(nx)

(analogous for y-direction)

Note: Using limits_x, limits_y is not strictly required, but it makes
the search for local observations more efficient.
If the localization is only based on grid point indices, the coordinates could
be handled as integer values

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_l_pdaf.F90 (3)

3. Count local observations (within distance cradius)
dim_obs_l = 0

DO i = 1, dim_obs_f

IF (“coords_obs_f(:,i) within coordinate limits”) THEN
Compute distance between coords_obs and coords_l

IF (distance <= cradius) &

dim_obs_l = dim_obs_l + 1

END IF

END DO

Note:
For efficiency, we only compute distance for observations within
coordinate limits limits_x, limits_y. Valid local observations reside
within circle of radius cradius.

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_l_pdaf.F90 (4)

4. Set index array for local observations

 Index of a local observation in the full observation vector

1. Include id_obs_in_fobs and distance_l
with use mod_assimilation

2. Allocate id_obs_in_fobs(dim_obs_l)

3. Fill index array:
cnt = 0
DO i = 1, dim_obs_f

IF (“coords_obs(:,i) within coordinate limits”) THEN
Compute distance between coords_obs and coords_l
IF (distance <= cradius) THEN

cnt = cnt + 1
id_lobs_in_fobs(cnt) = i
distance_l(cnt) = distance

END …

PDAF tutorial – Analysis step in online mode with a parallel model

g2l_state_pdaf.F90 & l2g_state_pdaf.F90

g2l_state_pdaf: Initialize state vector for local analysis domain
from global state vector

l2g_state_pdaf: Initialize global state vector
from state vector for local analysis domain

 The templates provide a generic implementation
using the array id_lstate_in_fstate

➜ We use the templates without any changes!

Note: The PDAFlocal module introduced in PDAF 2.3 allows to implement
without using these two routines. Please see the tutorial slides for the offline

implementation with PDAF-OMI for a description on how to use the
PDAFlocal routines. It can be used independently from PDAF-OMI.

PDAF tutorial – Analysis step in online mode with a parallel model

g2l_obs_pdaf.F90 & init_obs_l_pdaf.F90

g2l_obs_pdaf: Initialize local observed state vector from full observed
vector

init_obs_l_pdaf: Initialize local vector of observations

 The templates provide a generic implementation
using the array id_lobs_in_fobs

➜ We use the templates with out any changes!

Note:
init_obs_l_pdaf requires that the full observation vector
is stored in the array obs_f

PDAF tutorial – Analysis step in online mode with a parallel model

prodrinva_l_pdaf.F90

Compute the product of the inverse observation error covariance
matrix with some other matrix
+ apply observation localization (weighting)

 The weighting and the product are fully implemented for a diagonal
observation error covariance matrix with constant variance

➜ When we re-use the array distance_l initialized in
init_dim_obs_l_pdaf, the template can be used without
changes.

PDAF tutorial – Analysis step in online mode with a parallel model

Done!

Now, the analysis step for local ESKTF in offline mode is fully
implemented.

The implementation allows you now to use the local filter LESTKF
(LETKF, LSEIK can be used after adding calls to PDAF_assimilate_X)

Not usable are EnKF and SEEK (PDAF does not have localization for
these filters)

For testing one can vary localization parameters:

cradius – the localization cut-off radius

locweight – the weighting method

Default are cradius=0.0 (observation at single grid point) and
locweight=1 (uniform weight)

PDAF tutorial – Analysis step in online mode with a serial model

2) Hints for adaptions for real models

PDAF tutorial – Analysis step in online mode with a parallel model

Implementations for real models

• Tutorial demonstrates implementation for simple model

• You can base your own implementation on the tutorial
implementation or the templates provided with PDAF

• Need to adapt most routines, e.g.

• Specify model-specific state vector and its dimension

• Adapt distribute_state and collect_state

• Adapt routines handling observations

• Further required changes

• Adapt file output (usually only want to write ensemble mean
state in prepoststep_pdaf; sometimes possible to use
output routines from model)

PDAF tutorial – Analysis step in online mode with a parallel model

Multiple fields in state vector

• Tutorial uses a single 2-dimensional field

• All fields that should be updated by the assimilation have to be part
of the state vector

• For more fields:
• concatenate them in the state vector
• adapt state dimension in init_pdaf

• adapt init_ens_pdaf, collect_state_pdaf,
distribute_state_pdaf, prepoststep_pdaf

• For local filters: Adapt full (_f_) and local (_l_) routines and
g2l_state_pdaf, l2g_state_pdaf, g2l_obs_pdaf

• Note
• It can be useful to define a vector storing the offset (position)

of each field in the state vector
Note: The tutorial for PDAF-OMI includes an example

code using 2 model fields

PDAF tutorial – Analysis step in online mode with a parallel model

Multiple observed fields

• In tutorial: observed one field at some grid points

• For several observed fields adapt observation routines:
• concatenate observed fields in observation vector
• adapt all observation-handling routines

• Note
• The observation errors can be set differently for each

observed field (e.g. using an array rms_obs)
• The localization radius can be set specific for each observed

field (observation search in init_dim_obs_l_pdaf would
use different cradius for different fields)

• One can use spatially varying observation errors using an
array rms_obs in prodrinva(_l)_pdaf

Note: Using the PDAF-OMI functionality makes the handling of
multiple observation types much easier. See the tutorial slides

for PDAF-OMI on how to use this.

PDAF tutorial – Analysis step in online mode with a parallel model

The End!

Tutorial described example implementations

• Online mode of PDAF

• Simple 2D model with parallelization

• Parallelization over ensemble members at the model itself

• Square root filter ESTKF

• global and with localization

• Extension to more realistic cases possible with limited coding

• Applicable also for large-scale problems

For full documentation of PDAF
and the user-implemented routines

see http://pdaf.awi.de

