PDAF Tutorial

Implementation of the analysis step
in online mode with a parallel model

using PDAF’s full interface

P
@ M,I http://pdaf.awi.de gg&ﬁf&rﬁﬂ

Framework

V2.0 — 2025-05-09

Implementation Tutorial for PDAF online with serial model

We demonstrate the implementation
of an offline analysis step with PDAF
using the template routines provided by PDAF
The example code is part of the PDAF source code package
downloadable at http://pdaf.awi.de
(This tutorial is compatible with PDAF V3.0 and later)

Please note:

The implementation variant described here is rather for reference with
older implementations or can be considered as an expert-mode.
We recommend to base any new implementation on using the PDAF3
interface that was introduced in PDAF V3.0. Please see the tutorial.

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

http://pdaf.awi.de/

Implementation Tutorial for PDAF online / parallel model

This is just an example!

For the complete documentation of PDAF’s interface
see the documentation

at http://pdaf.awi.de

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Overview

Focus on Error Subspace Transform Kalman Filter
(ESTKF, Nerger et al., Mon. Wea. Rev. 2012)

4 Parts
a) Global filter b) Localized filter

We recommend to first implement the global filter. The localized
filter re-uses routines of the global filter.

In this tutorial we only cover the case of a parallel model.
The implementation using a model without parallelization is
described in a separate tutorial.

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Contents

Oa) Files for the tutorial

Ob) The model with parallelization

Oc) State vector and observation vector
0d) PDAF online mode

Oe) Inserting subroutine calls

Of) Forecast phase

1a) Global filter
1b) Local filter

2) Hints for adaptions for real models

PDAF tutorial — Analysis step in online mode with a parallel model

10
13
16
22
32

43
61

90

PDAFParaIIeI

Data Assimilation
Framework

0a) Files for the Tutorial

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Tutorial implementation

Files are in the PDAF package

Directory:

/tutorial/classical/online 2D parallelmodel

« Fully working implementations of user codes

 PDAF core filesarein /src
Makefile refers to it and compiles the PDAF library

* Only need to specify the compile settings (compiler, etc.) by
environment variable PDAF_ARCH. Then compile with ‘make’.

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Template files for online mode

Directory: /templates/online
« Contains all required files

« Contains also
command line parser
(convenient but not required)

To generate your own implementation:

1. Copy content of directory
e.g. into sub-directory of model source code

Add calls to interface routines to model code
Complete user-routines for your model

Adapt compilation (e.g. Makefile) and compile
Run with assimilation options

ok~ Wb

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

PDAF library

Directory: /src

The PDAF library is not part of the template

PDAF is compiled separately as a library
and linked when the assimilation program is compiled

Makefile includes a compile step for the PDAF library

One can also cd to /src and run ‘make’ there
(requires setting of PDAF_ARCH)

$PDAF ARCH

Environment variable to specify the compile specifications

Definition files in /make.arch
Define by, e.g.

setenv PDAF ARCH linux gfortran (tcsh/csh)
export PDAF ARCH=linux gfortran (bash)

PDAF tutorlRRDARnalgsisl stémalysigiséemodefiliie enpdeallel model

PDAFParaIIeI

Data Assimilation
Framework

Ob) The parallelized model

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

2D ,,Model*

See the separate tutorial slides about the model

« Simple 2-dimensional grid domain

« 36 x 18 grid points (longitude x latitude)

« True state: sine wave in diagonal direction
(periodic for consistent time stepping)

True field, initial time True field, step 9 True field, step 18

—1PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Parallel Model: Files

The source code of the parallel model consists of the following files:

mod_model.F90
mod_parallel_model.F90
main.F90

initialize.F90
integrate.F90

Note: One can nicely compare the source codes of the model without
and with parallelization

For clarity, the implementation with PDAF is found in

main_pdaf.F90
integrate_pdaf.F90

It allows for easy comparison of the implementations PDAFPara||e|

Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

Oc) state vector and observation vector

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a serial model Framework

State vector — some terminology used later

PDAF performs computations on state vectors

State vector
« Stores model fields in a single vector
» Tutorial shows this for one 2-dimensional field
« Multiple fields are just concatenated into the vector

» All fields that should be modified by the assimilation have to be
in the state vector

State dimension

* Is the length of the state vector
(the sum of the sizes of the model fields in the vector)

Ensemble array
« Rank-2 array which stores state vectors in its columns

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Observation vector

» Observation vector
« Stores all observations in a single vector
» Tutorial shows this for one 2-dimensional field
« Multiple observed fields are just concatenated into the vector

* Observation dimension
* |s the length of the observation vector
(sum of the observations over all observed fields in the vector)

 Observation operator
« Operation that computes the observed part of a state vector
« Tutorial only selects observed grid points

« The operation can involve interpolation or integration
depending on type of observation

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Oc) PDAF online mode

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Online mode

« Combine model with PDAF into single program
* “model pdaf”

 Add 3 subroutine calls:

init parallel pdaf - revise parallelization
init pdaf - initialize assimilation
assimilate pdaf - perform assimilation

« Implement user-supplied routines, e.g. for
« observation operator
* initialization of observation vector
» transfer between state vector and model fields PDAF:..i

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Program flow with model extended for data assimilation

Simulation Model

| Initialize MP]

!

Initialize Model
generate mesh
Initialize fields

v

—><Do i=1, nsteps>—>

Time stepper
consider BC
Consider forcing

v

Assimilation System

Initialize MPI

+

init_parallel_pdaf

!

Initialize Model
generate mesh
Initialize fields

!

init_pdaf

v
—><Do i=1, nsteps)—»

v

| Post-processing |

Time stepper
consider BC
Consider forcing

'

assimilate_pdaf

v

v

| Post-processing

PDAF tutorial — Analysis step in online mode with a parallel model

Legend
Model

Extension for
data assimilation

PDAFParaIIeI

Data Assimilation
Framework

Fully parallel configuration

« Tutorial shows implementation for a fully parallel case

=> Number of processes equals ensemble size times
number of processes used for a single model task!

« For a more flexible (and complicated) configuration see
PDAF’s online guide

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

model pdaf: General program structure

program mailn pdaf

init parallel pdaf -initialize parallelization
initialize - initialize model information
init pdaf - initialize parameters for PDAF
and read ensemble
integrate - time stepping loop
assimilate pdaf -compute analysis step

(called inside stepping loop)

end program

Note:
In the example code, we use different files main.F90 and
main_pdaf.F90 to allow for easy comparison PDAF:. .

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

mod_assimilation.F90

Fortran module

» Declares the parameters used to configure PDAF

« Will be included (with ‘use’) in the user-written routines

« Additions to template necessary for observation handling

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

0d) Inserting subroutine calls

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Where to insert subroutine calls?

init parallel pdaf

= at the start of the program, but after the MPI_Init performed
in the code of the parallel model

init pdaf

= after the initialization of the model
i.e. directly before the time stepping loop

assimllate pdaf

=> Last operation in the time stepping loop
i.e. just before the ‘END DO’

Note: One can add the routines one after the other:
Firstinsert init parallel pdaf and test the program, then add
init pdaf, etc.

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_parallel_pdaf.F90

» |tis fully implemented template usable with small adaptions
* Required adaptions

* Include MPI variables from module of the model:
MPI_COMM_WORLD, COMM_model, mype_model, npes_model
(the latter three variables might be named differently in a model)

« init_parallel_pdaf defines a model communicator
comm model

(actually it's a set for communicators, one for each model task)

« Set communicator of the parallel model to comm_model at the end
if init_parallel pdaf:

‘my models communicator” = comm model
(include my_models_communicator from module of model)

« Set variables for number of processes in model and rank of a
process (npes model, mype model) at end of routine

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_parallel_pdaf.F90 (2)

 Parallelization variables for PDAF are declared in Fortran
module

mod parallel pdaf

* Important variable:
n modeltasks
« Defines number of concurrent model integrations.
 Has to be equal to ensemble size
* |Inthe example: Read as ‘dim_ens’ from command line

(using subroutine ‘parse’)

* Important: If the parallel model uses MPI_COMM_WORLD, this
has to be replaced! (MPI_COMM_WORLD denotes always all

processes in the program) PDAF
Parallel

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_parallel _pdaf.F90 (3) - Example

The routine initializes 3 groups of communicators
« COMM_model: Used to run the parallel model forecasts

« COMM filter: Used to compute the filter
« COMM_couple: Coupling between model and filter processes

These are provided to PDAF when calling PDAF _init

MPI_COMM_WORLD

The figure shows an example

. 12 processes in total COMM_filter _ COMM_model 1
« 3 model tasks in parallel | 5 : E6i :7: 1 8 !| | COMM_model 2
* Each model task uses 4 "o 10! 111! 112] | COMM_model 3
processes in its COMM_model — 'N' ;)' ;'
« Each COMM _couple links groups 2 o o o
of 3 processes to distribute and 3 3 3 3
collect ensemble states s S S S
. S S 3 =
« The filter processes use model task 1 g3 9 9 8
init_parallel_pdaf is coded to provide this configuration when
running with 12 processes and setting dim_ens=3 PDAFParaIIeI
Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_pdaf.F90

Routine sets parameters for PDAF, calls PDAF init
to initialize the data assimilation, and calls PDAF get state to

prepare the ensemble integrations:

Template contains list of available parameters
(declared in and used from mod assimilation)

Independent of the filter algorithm:
* Include information on size of model fields from model
» Define dimension of decomposed state vector

dim state p = nx p * ny

In call to PDAF init, the name of the user-supplied routine for

ensemble initialization routine is specified:
init ens pdaf

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_pdaf.F90 (I)

In call to PDAF_get_state, the names of 3 user-supplied routines
are specified:

next observation pdaf
- Set number of time steps

in forecast phase

distribute state pdaf
- Initialize model fields from state

vector

prepoststep ens pdaf
- poststep routine (compute estimated

errors, write state estimate, etc.)

Initially, one can just copy the template routines. One can adapt
them later to the particular application. PDAFPara”eI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

assimilate_pdaf.F90

Routine just calls a filter-specific routine like

PDAF assimilate estkf

We don't insert PDAF assimilate estkf directly into the model
code

=> because, we need to declare all user-supplied routines as
‘EXTERNAL’. This could clutter the model code.

Filter-specific user routines are described next. Initially, one can just
copy the template routines.

Note: Template contains calls for PDAF assimilate estkf and
PDAF assimilate lestkf. Need to adapt for other filters

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Differences online and offline

 If you've studied the tutorial for offline mode

Offline Online

» Separate programs for « Extend model program for
model and assimilation assimilation

* Needed to implement e Operations in initialize
routine intialize given by model; no changes

for assimilation!

* Grid dimensions declared in * Grid dimensions defined in
mod assimilation model code (mod model)

 Ensemble information read * Ensemble information
from files provided by model fields

*mod assimilation *mod assimilation only
contains all field and contains variables for
assimilation variables assimilation

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Optional routine: finalize _pdaf.F90

Callto finalize pdaf can be inserted at the end of the model

Routine contains two calls to PDAF _print info:

CALL PDAF print info (2)
— display information on allocated memory inside PDAF
CALL PDAF print info (1)

— display timing information
(values 3 and 4 also possible for more detailed timers)

Note: finalize pdaf only prints the information for mype world==0

In addition there is

CALL PDAF deallocate()

which deallocates internal arrays in PDAF

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Oe) Forecast phase

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Files for PDAF

Template contains all required files

> just need to be filled with functionality

init pdaf.F90 1 .
init_ens odaf.F90 L initialization
next observation pdaf.F90 - ensemble
distribute state pdaf.F90 | forecast

collect state pdaf.F90
init dim obs pdaf.F90

obs op pdaf.F90

init obs pdaf.F90

J \

i analysis step

prodrinva pdaf.F90
prepoststep ens pdaf.F90 } PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_pdaf.F90

Routine sets parameters for PDAF and calls PDAF init
to initialize the data assimilation:

Template contains list of available parameters
(declared in and used from mod assimilation)

For the example set :
1.dim ens = 9
2. rms obs = sqrt(0.5)
3. filtertype = 6 (for ESTKF)

4.delt obs = 2 (assimilate afer each 2" time step)

In call to PDAF _init, the name of the ensemble initialization routine
is specified:

init_ens_pdaf PDAFeaaie

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_ens_pdaf.F90

A call-back routine called by PDAF _init:

* Implemented by the user
* |ts name is specified in the call to PDAF _init
« ltis called by PDAF through a defined interface:

SUBROUTINE 1nit ens pdaf (filtertype, dim p,
dim ens, state p, Uinv, ens_p, flag)

Declarations in header of the routine shows “intent” (input, output):

REAL, INTENT (out) :: ens p(dim p, dim ens)

Note:
All call-back routines have a defined interface and show the intent of

the variables. Their header comment explains what is to be done in

the routine. PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_ens_pdaf.F90 (2)

Initialize ensemble matrix ens p for the start time of the assimilation

1. Include nx, ny, nx p with use mod model
2. Declare and allocate real :: field(ny, nx)
3. Loop over ensemble files (i=1,dim ens)
for each file:
* read ensemble state into field

» store local partof field incolumn i of ens p
(columns nx_p*mype_model+1 : nx_p*mype_model+nx_p)

4. Deallocate field

Note:
Columns of ens p are state vectors. Store following
PDAFParaIIeI

storage of field in memory (column-wise in Fortran) Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

The forecast phase

At this point the initialization of PDAF is complete:
 |nitial Ensemble of model states is initialized
» Filter algorithm and its parameters are chosen

Next:
* Implement user-routines for forecast phase

 All are call-back routines:
» User-written, but called by PDAF

Note:
Some variables end with _p.

It means that the variable is specific for a process
(its values are different for each process)

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

next _observation_pdaf.F90

Routine to
« Set number of time steps in next forecast phase

« Set flag to control exit from forecasts (doexit)

Most simple setting:
include delt obs from mod assimilation
nsteps = delt obs

doexit = 0

Note: The assimilation program stops when the maximum number
of time steps of the model is reached, even if doexit=0
PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

next_observation_pdaf.F90 (ll)

More sophisticated setting:

« Utilize stepnow (current time step) and total steps
(total number of time steps given by model).

IF (stepnow + nsteps <= total steps) THEN

nsteps = delt obs | Forecast length

doexit = 0 I Continue assimilation
ELSE

nsteps = 0 I No more steps

doexit = 1 I Exit assimilation
END IF

Note: In the example doexit=1 is used only inside PDAF and

avoids some screen output. PDAFeraraiel
Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

distribute state pdaf.F90

Routine to
* |nitialize model fields from a state vector

* Routine is provided with the state vector vector p

For the example:

1.Access nx p, nyand field p with use
mod model

2. Initialize model field from state vector:

DO jJ =1, nx p
field p(l:ny, J) = state p(l1+(J-1)*ny : j*ny)

END DO

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

prepoststep _ens pdaf.F90

Post-step routine for the online mode:

Already there in the template:

1. Compute ensemble mean state state p

2. Compute estimated variance vector variance

3. Compute estimated root mean square error rmserror est

Possible extensions:

4. Write analysis state (ensemble mean, state step* ana.txt)

5. Write analysis ensemble into files
(Analogous to reading in init ens pdaf)

6. Analogously one can write the forecast fields

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Completion of forecast phase

At this point the implementation of the forecast phase is practically
complete:

» Initial ensemble and PDAF’s parameters are set
 The ensemble forecast can be computed

One can now compile the program model_pdaf (make model_pdaf)
to check whether it runs.

Note: It is recommended to compile PDAF with —
DPDAF_NO_UPDATE at this point as the routine for the analysis
step are not yet implemented.

Note: For now, prepoststep ens pdaf only lets you test the
initial ensemble. Testing the forecast fields need implementation of
routine collect state pdaf
PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

1a) Global filter

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Running the tutorial program

* cd to /tutorial/classical/online 2D serialmodel

« Set environment variable PDAF ARCH or set it in Makefile
(e.9. linux gfortran openmpi)

« Compile by running ‘make model pdaf’
(next slide will discuss possible compile issues)

* Run the program with
mpirun -np 18 ./model pdaf -dim ens 9

* Inputs areread in from /tutorial/inputs online

» Outputs are written in
/tutorial/classical/online 2D parallelmodel

» Plot result, e.g. with ‘octave’:
load state steplO ana.txt

pcolor (state steplO ana)

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Requirements for compiling PDAF

PDAF requires libraries for BLAS and LAPACK

» Libraries to be linked are specified in the include file for make
in /make.arch (file according to PDAF ARCH)

 For $PDAF ARCH=linux gfortran openmpi the specification is
LINK LIBS =-L/usr/lib -llapack -1lblas -1m

» |f the libraries are at another non-default location, one has to change
the directory name (/usr/1ib)

« Some systems or compilers have special libraries
(e.g. MKL for ifort compiler, or ESSL on IBM/AIX)

PDAF needs to be compiled for double precision

* Needs to be set at compiler time in the include file for make:

 Fordfortran: OPT = -03 -fdefault-real-8

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Files in the tutorial implementation

/tutorial/inputs online

* true stepY.txt true state

* state ini.txt initial estimate (ensemble mean)
* obs stepY.txt observations

* ens X.txt initial ensemble members

/tutorial/classical/online 2D parallelmodel
(after running model_pdaf)

* state stepY ana.txt analysis state estimate

* ens X stepY ana.txt analysis ensemble members

X=1,...,9: ensemble member index
Y=1,...,18: time step index
Note: Files *_for.txt contain forecast fields PDAFerasie

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Result of the global assimilation

For example, at step 10

« The analysis state (center) is closer to the true field than without
assimilation (left)

« Truth and analysis are nearly identical (right)

Step 10: State without assimilation Step 10: Analysis state with assimilation Step 10: Difference assimilation estimate - truth

0.02

- 1001

| - 4001

-0.02

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

The analysis step

Next: Implement user-routines for the analysis step

The analysis step needs several user-supplied routines
for operations like

* write forecast model fields into state vector
 determine number of available observations
« observation operator acting on a state vector

* nitialization of the vector of observations

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

collect_state pdaf.F90

Routine to
* Fill state vector with forecasted model fields

* Routine is provided with the state vector vector p

For the example:

1. Access nx, nyand field with use mod model

2. Initialize state vector from model field:
DO jJ =1, nx p

state p(1+(j-1)*ny : J*ny) = field p(l:ny, 3J)
END DO

Note: The routine is independent of the filter!

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_pdaf.F90

Routine to
* read observation file

« Count number of observations for process-local part
of state vector (direct output to PDAF: dim obs_p)

Optional, also

« Initialize array holding process-local available
observations

« Initialize index array telling index of observation point
In process-local state vector

The most complicated routine in the example!
(but only 123 lines)

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_pdaf.F90 (2)

Preparations and reading of observation file:
1. Include nx, ny, nx p with use mod model

2. declare and allocate real array obs field(ny, nx)

3. Get offset of local part in global state vector
of £ p =3Sum over nx_p*ny up to i=mype_filter
4. read observation file for current time step:

Initialize string ‘stepstr’ for time step

OPEN (12, &
file="'inputs online/obs’//stepstr//’'.txt’, &
status='old")

DO 1 =1, ny
READ (12, *) obs field(i, :)

END DO

CLOS 12
LOSE) PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_pdaf.F90 (3)

Count available process-local observations (dim_obs_p):

1. Declare integer :: cnt0O, cnt p

2. Now count

cnt0 = 0
cnt p = 0
DO 7 =1, nx
DO 1= 1, ny
cnt0 = ¢cnt0 + 1
IF (cntO0>o0ff p .AND. cntO<=off p+nx p*ny) THEN
IF (obs field(i,3) > -999.0) cnt p = cnt p + 1

END IF; END DO; END DO
dim obs p = cnt p

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_pdaf.F90 (4)

Initialize observation vector (obs p)
and index array (obs index p):

1. Include obs p and obs index p
with use mod assimilation

2. Allocate
obs p(dim obs p), obs index p(dim obs p)

(If already allocated, deallocate first)

3. Now initialize ...

Note:
The arrays only contain information about valid observations;
one could store observations already in files in this way.

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_pdaf.F90 (5)

Initialize obs and obs index

cnt0 = cnt p = ¢cnt0 p = 0

DO 7 = 1,
DO 1= 1, ny
cnt0 = cnt0 + 1
IF (cntO>o0ff p .AND. &
cnt0<=o0ff p+nx p*ny)
cnt0 p + 1
> -999.0)

nx

THEN

cnt0 p =
IF (obs field(i,J)
cnt p = cnt p + 1
obs index p(cnt p) = cnt0 p
obs p(cnt p) = obs field(i, J)
END IF; END IF
END DO
END DO

PDAF tutorial — Analysis step in online mode with a parallel model

THEN

! Count grid points

! ITndex
! observations

PDAFParaIIeI

Data Assimilation
Framework

obs op pdaf.F90

Implementation of observation operator
acting one some state vector

Input: state vector state p

Output: observed state vector m state p

1. Include obs index p by use mod assimilation

2. Select observed grid points from state vector:

DO 1 = 1, dim obs p

m state p(i) = state p(obs index p(i))
END DO
Note:
dim obs p is an input argument of the routine PDAF
— - Parallel

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_obs_ pdaf.F90

Fill PDAF’s observation vector

Output: vector of observations ocbservation p

1. Include obs p with use mod assimilation

2. |Initialize observation p:

observation p = obs p

Note:
This is trivial, because of the preparations in init dim obs pdafl!

(However, the operations needed to be separate, because PDAF
allocates observations p afterthecallto init dim obs pdaf)

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

prodrinva_pdaf.F90

Compute the product of the inverse observation error covariance
matrix with some other matrix

* Input: Matrix 2 p (dim obs p, rank)

« Output: Product matrix C_p (dim obs p, rank)
(rank is typically dim ens-1)

1. Declare and initialize inverse observation error variance

ivariance obs = 1.0 / rms obs**2

2. Compute product:

DO j = 1, rank
DO 1 = 1, dim obs p
C p(i, J) = ivariance obs * A p(i, 3J)
END DO

S PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Done!

The analysis step in online mode with the parallelized model is
fully implemented now

The implementation allows you now to use the global filter
ESTKF (ETKF and SEIK are usable by adding a call to the
corresponding routines PDAF _assimilate X in assimilate pdaf)

Not usable are EnKF and SEEK (The EnKF needs some other
user files und SEEK a different ensemble initialization)

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

A complete analysis step

We now have a fully functional analysis step
- if no localization is required!

Possible extensions for a real application:
Adapt routines for

» Multiple model fields
=> Store full fields consecutively in state vector

» Third dimension
- Extend state vector

» Different observation types
=> Store different types consecutively in observation vector

» Other file type (e.g. binary or NetCDF)
=> Adapt reading/writing routines PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Differences between online and offline modes

For the analysis step in online mode:
collect state pdaf - additional routine for online mode

init dim obs pdaf - read from file for current time step;
include nx, ny from mod model
instead of mod assimilate

obs op pdaf - identical in online and offline modes
init obs pdaf - identical in online and offline modes
prodrinva pdaf - identical in online and offline modes

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

1b) Local filter with parallelized model

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Localization

Localization is usually required for high-dimensional systems

» Update small regions (S)
(e.g. single grid points, single vertical columns)

« Consider only observations within cut-off distance (D)

« Weight observations according to distance from S

@ // \\
/(D e \
/ S LTl L)
\ /
| 4
\\ //

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

The FULL observation vector

* Asingle local analysis at S (single grid point) need observations
from domain D

* Aloop of local analyses over all S needs all observations
« This defines the full observation vector
« Why distinguish full and all observations?

=> They can be different in case of parallelization!

 Example:

» Split domain in left and right halves

» Some of the analyses in left half
need observations from the right side.

» Depending on localization radius not all observations from
the right side might be needed for the left side analyses

PDAFParaIIeI

Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

Running the tutorial program

« Compile as for the global filter
* Run the program with

mpirun —np 18 ./model pdaf -dim ens 9 OPTIONS

« OPTIONS are always of type —-KEYWORD VALUE
 Possible OPTIONS are

-filtertype 7 (select LESTKEF if not set in init_pdaf)

-cradius 5.0 (set localization radius, 0.0 by default, any
positive value should work)

-locweight 2 (set weight function for localization, default=0

for constant weight of 1; possible are integer
values 0 to 4; see init pdaf)

Note: You can run the model e.g. using 18 MPI-processes even on most

computers with only 2 processor cores. However, to see a speedup in

computing time, you need more physical processors PDAFP o
aralie

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Result of the local assimilation

mpirun —-np 9./model pdaf —-dim ens 9 -filtertype 7

« Default: zero localization radius (cradius=0.0)

» Change only at observation locations

Step 10: State without assimilation Step 10: Analysis state with assimilation Step 10: Difference assimilation estimate - truth
18 [15
16 ’
14
0.5
12
10 B
8
-0.5
6
4 -1
2_ 15

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Result of the local assimilation (2)

—filtertype 7 -cradius 10.0

« All local analysis domains are influenced (all see observations)
« Up to 16 observations in a single local analysis (average 9.6)

Note: The set up of the experiment favors the global filter
because of the shape of the ensemble members

Step 10: State without assimilation Step 10: Analysis state with assimilation Step 10: Difference assimilation estimate - truth
06 g - . | 0 [M
] [[
04 °Hp i 16
il LT
» 14 00 L los 14 1
B - 12 .
i | L]
1 0 10 = - {0 10 0
s s 0 N I
02 0 a suann
| ! 05 |
) :) i ﬂ |
-0.4
4 4 0
2 ! 2
06 [
5 10 15 20 25 30 35 5 10 15 20 25 30 3

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Result of the local assimilation (2)

—filtertype 7 -cradius 10.0 —-locweight 2

« Observation weighting by 5t"-order polynomial

» Analysis field is smoother than before (because of weighting)

Step 10: State without assimilation

Step 10: Analysis state with assimilation

20

PDAF tutorial — Analysis step in online mode with a parallel model

25

30

35

Step 10: Difference assimilation estimate - truth

-0.5

-1

15

20

25 30 3

PDAFParaIIeI

Data Assimilation
Framework

Result of the local assimilation (3)

—-filtertype 7 -cradius 40.0

« Large radius: All local analysis domains see all observations

« Result identical to global filter

Step 10: State without assimilation Step 10: Analysis state with assimilation Step 10: Difference assimilation estimate - truth

0.02

- 40.01

] - {001

-0.02

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Local filter LESTKF

» Localized filters are a variant of the global filters
» User written files for global filter can be widely re-used

» Additional user-written files to handle local part

* No changes to:
initialize.F90
init ens pdaf.F90

prepoststep ens pdaf.F90

« Changein init pdaf.F90:
Set filtertype = 7

(You can also set it later on command line)

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Local filter LESTKF (2)

Adapt files from global analysis
init dim obs pdaf.F90 =P init dim obs £ pdaf.F90
obs op pdaf.F90 =* obs op £ pdaf.F90
init obs pdaf.F90 =*» init obs £ pdaf.F90

->

prodrinva pdaf.F90 prodrinva 1 pdaf

Naming scheme:

£ "full”: operate on all required observations
(without parallelization these are all observations)

~ 1 “local”: operation in local analysis domain or corresponding
local observation domain

PDAFParaIIeI

Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

Local filter LESTKEF (3)

Additional files for local analysis step

init n domains pdaf.F90
init dim 1 pdaf.F90 localize

g2l state pdaf.F90 B state vector
12g state pdaf.F90

init dim obs 1 pdaf.F90
g2l obs pdaf.F90 r
init obs 1 pdaf.F90 _

J\

localize
observations

Discuss now the files in the order they are called

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_n_domains_pdaf.F90

Routine to set the number of local analysis domains

Output: n domains p
For the example: number of process-local grid points (nx_p * ny)

To do:
1. Include nx p, ny with use mod model

2. Set

n domains p = nx p * ny

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_f pdaf.F90

Operations in case of parallelization:

Read observation file

Count number of observations for process-local part of state
vector (dim obs p)

Initialize arrays holding process-local available observations
(obs p) and their coordinates (coords obs p)

Initialize index array (obs index p) telling index of a process-
local observation in process-local state vector

Initialize full number of observations (dim obs f), vector of
observations (obs_f), and coordinates (coords obs f)

“FULL” observation vector:
All observations required for all local analyses in process-local part
of state vector (Here: Full=All observations for simpicity)

Adapt init dim obs pdaf from global filter ... PDAFeaaie

Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_f pdaf.F90 (2)

Initialize coordinates of process-local observations
For the local filter:

1. Copy functionality from init dim obs pdaf.F90

(In the subroutine definition take care that dim_obs_fis used
instead of dim_obs_p)

2. Include dim obs p with use mod assimilation

3. Initialization of observation coordinates

a) Add allocatable REAL arrays coords obs p
and obs p to the routine (don’tinclude obs p from module)

b) Inthe loop where obs p is setadd
coords obs p(l, cnt p) = REAL (3J)
coords obs p(2, cnt p) = REAL (1)

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_f pdaf.F90 (3)

Initialize full quantities (dim obs f, obs f, coords obs f)

1.

5.
6.

Include allocatable arrays coords obs f and obs_f
with mod assimilation

Obtain dim obs f bycalling PDAF gather dim obs f

Allocate obs f and coords obs f
(deallocate first if already allocated)

Obtain obs f bycalling PDAF gather obs f
Obtain coords obs f bycalling PDAF gather obs f
Add DEALLOCATE for obs p and coords obs p

Note: It is mandatory to call PDAF_gather _dim_obs f once before using
the two other functions because it stores dimension information.

Note: The three PDAF functions have been added with PDAF Version
1.13 to avoid that the user implementation needs calls to MPI functions.
Note: coords obs f hasto be a REAL array PDAFearaie

Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

obs op f pdaf.F90

Implementation of observation operator
for full observation domain
Difficulty:
« The state vector state p islocal to each process

* Full observed vector goes beyond process boundary

Implement two steps:
1. Initialize process-local observed state

2. Gather full observed state vector using MPI

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

obs op f pdaf.F90 (2)

1. Initialize process-local observed state m state p

a) Include dim obs p and obs index p
with use mod assimilation

b) Declare real allocatable array m state p(:)

c) Allocate
m state p(dim obs p)

d) Fill the array

DO 1 =1, dim obs p
m state p(i) = state p(obs index p(i))
END DO

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

obs op f pdaf.F90 (3)

2. Get full observed state vector
a) Add variable INTEGER :: status
b) Add call to PDAF _gather obs f:

CALL PDAF gather obs f(m state p, m state f, status)

c) Deallocate m_state p

Note: It is mandatory to call PDAF gather dim obs f once before

using the two other functions because it stores dimension information.
Usually this was already done in init dim obs f pdaf

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_| pdaf.F90

Set the vector size dim 1 of the local analysis domain

Further set the coordinates of the local analysis domain and the

indices of the elements of the local state vector in the global state
vector

Each single grid point is a local analysis domain in the example
1. Set dim 1 = 1

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_|_pdaf.F90 (2)

2. Determine coordinates of local analysis domain

1. Compute offset:
off p=3umover nx p*ny up toi=mype_filter
2.Include coords 1 with use mod assimilation

3. Include nx, ny, nx p with use mod model

4. Compute coords 1 from nx, ny:

coords 1 (1)

= regl(ceiling(real(domain_p + off p)/real(ny)))
coords 1(2)

= real (domain p + off p) - (coords 1(1)-1)*ny

Note: With parallelization the domain numbering begins with 1 for each
process. For the coordinates we also need to count the domains from

processes with lower process rank using off p PDAFParaIIeI
- Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_|_pdaf.F90 (3)

3. Set indices of the elements of the local state vector in the global
decomposed state vector

a) Include id lstate in pstate
with use mod assimilation

b) Allocate id 1state in pstate(dim 1)
(Deallocate first if already alloced)

c) Specify the index: It's identical to domain p here
(because we only have a single model variable)

id lstate 1n pstate(l) = domain p

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_| pdaf.F90

Set the size of the observation vector for the local analysis domain

As for the global filter, this is the longest routine (~102 lines)

Only direct output: dim obs 1

Operations:

1. Include coordinates coords 1 with use mod assimilation
2. Determine coordinate range for observations

3. Count observations within prescribed localization radius

4. Setindex array for local observations (1id lobs in fobs)and array
of distances of local observations (distance 1)

Note: The index array in step 4 is re-used for an efficient implementation

of g2| obs pdaf. The local distance array initialized in step 4 is re-used in

prodrinva_| pdaf avoiding to recompute distances. PDAF
Parallel

Data Assimilation
PDAF tutorlRRDARnalgsisl stémalysigiséemodefiliie enpdeallel model Framework

init_dim_obs_| pdaf.F90 (2)

2. Determine coordinate range for local observations
1. Declare real :: limits x(2), limits y(2)
2. Include cradius with use mod assimilation

3. Setlower and upper limits. E.g. for x-direction

limits x (1) = coords 1(1) - cradius

1f (limits x(1) < 1.0) limits x(1) = 1.0

limits x(2) = coords 1(1) + cradius

1f (limits x(2) > real(nx)) limits x(2) = real (nx)

(analogous for y-direction)

Note: Using 1imits x, limits vy is not strictly required, but it makes
the search for local observations more efficient.
If the localization is only based on grid point indices, the coordinates could

be handled as integer values PDAFpara||e|

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_| pdaf.F90 (3)

3. Count local observations (within distance cradius)
dim obs 1 = 0
DO 1 = 1, dim obs f
IF (“coords obs f (:,1i) within coordinate limits”) THEN
Compute distance between coords obs and coords 1
IF (distance <= cradius) &
dim obs 1 = dim obs 1 + 1
END IF
END DO

Note:
For efficiency, we only compute distance for observations within

coordinate limits 1imits x, limits y. Valid local observations reside
within circle of radius cradius.
PDAFParaIIeI

Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

init_dim_obs_| pdaf.F90 (4)

4. Setindex array for local observations
> Index of a local observation in the full observation vector

1. Include id obs in fobs and distance 1
with use mod assimilation

2. Allocate id obs in fobs(dim obs 1)

3. Fillindex array:

cnt = 0
DO 1 =1, dim obs f
IF (“coords obs(:,1i) within coordinate limits”) THEN
Compute distance between coords obs and coords 1
IF (distance <= cradius) THEN
cnt = cnt + 1
id lobs _in fobs(cnt) = 1
distance_1l(cnt) = distance

END .. PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

g2l _state pdaf.F90 & I2g_state pdaf.F90

g2l_state pdaf: Initialize state vector for local analysis domain
from global state vector

I2g state_pdaf: Initialize global state vector
from state vector for local analysis domain

» The templates provide a generic implementation
using the array id lstate in fstate

=> We use the templates without any changes!

Note: The PDAFlocal module introduced in PDAF 2.3 allows to implement
without using these two routines. Please see the tutorial slides for the offline
implementation with PDAF-OMI for a description on how to use the
PDAFlocal routines. It can be used independently from PDAF-OMI.

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

g2l _obs pdaf.F90 & init_obs | pdaf.F90

g2l_obs_pdaf: Initialize local observed state vector from full observed
vector

init_obs_| pdaf: Initialize local vector of observations

» The templates provide a generic implementation
using the array id lobs in fobs

=> We use the templates with out any changes!

Note:

init obs 1 pdaf requires that the full observation vector
Is stored in the array obs f

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

prodrinva_| pdaf.F90

Compute the product of the inverse observation error covariance
matrix with some other matrix

+ apply observation localization (weighting)

» The weighting and the product are fully implemented for a diagonal
observation error covariance matrix with constant variance

=> When we re-use the array distance 1 initialized in
init dim obs 1 pdaf, the template can be used without
changes.

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Done!

Now, the analysis step for local ESKTF in offline mode is fully
implemented.

The implementation allows you now to use the local filter LESTKF
(LETKF, LSEIK can be used after adding calls to PDAF _assimilate X)

Not usable are EnKF and SEEK (PDAF does not have localization for
these filters)

For testing one can vary localization parameters:
cradius — the localization cut-off radius
locweight — the weighting method

Default are cradius=0.0 (observation at single grid point) and
locweight=1 (uniform weight)

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

2) Hints for adaptions for real models

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a serial model Framework

Implementations for real models

» Tutorial demonstrates implementation for simple model

* You can base your own implementation on the tutorial
implementation or the templates provided with PDAF

* Need to adapt most routines, e.qg.
» Specify model-specific state vector and its dimension
 Adapt distribute state and collect state
« Adapt routines handling observations

* Further required changes

» Adapt file output (usually only want to write ensemble mean
state in prepoststep pdaf; sometimes possible to use
output routines from model)

PDAFParaIIeI

Data Assimilation
PDAF tutorial — Analysis step in online mode with a parallel model Framework

Multiple fields in state vector

» Tutorial uses a single 2-dimensional field

» All fields that should be updated by the assimilation have to be part

of the state vector

* For more fields:
 concatenate them in the state vector
- adapt state dimension in init pdaf

« adapt init ens pdaf, collect state pdaf,
distribute state pdaf, prepoststep pdaf

« For local filters: Adapt full (£)andlocal (1) routines and
g2l state pdaf, 12g state pdaf, g2l obs pdaf

* Note

« |t can be useful to define a vector storing the offset (position)

of each field in the state vector

Note: The tutorial for PDAF-OMI includes an example
code using 2 model fields

PDAF tutorial — Analysis step in online mode with a parallel model

PDAFParaIIeI

Data Assimilation
Framework

Multiple observed fields

» |n tutorial: observed one field at some grid points

* For several observed fields adapt observation routines:
« concatenate observed fields in observation vector
« adapt all observation-handling routines

» The observation errors can be set differently for each
observed field (e.g. using an array rms obs)

* The localization radius can be set specific for each observed
field (observation search in init dim obs 1 pdaf would
use different cradius for different fields)

« One can use spatially varying observation errors using an
array rms_obs in prodrinva(1) pdaf

Note: Using the PDAF-OMI functionality makes the handling of
multiple observation types much easier. See the tutorial slides PDAF

for PDAF-OMI on how to use this. | Parallel

Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

The End!

Tutorial described example implementations

Online mode of PDAF
Simple 2D model with parallelization
Parallelization over ensemble members at the model itself
Square root filter ESTKF
* global and with localization
Extension to more realistic cases possible with limited coding

Applicable also for large-scale problems

For full documentation of PDAF
and the user-implemented routines

see http://pdaf.awi.de PDAF-s:ie
aralle

Data Assimilation

PDAF tutorial — Analysis step in online mode with a parallel model Framework

