
PDAF Tutorial

Implementation of the analysis step

in online mode with a parallel model

using PDAF-OMI

http://pdaf.awi.de

V1.12 – 2023-02-20

PDAF tutorial – Analysis step in online mode with a parallel model

Implementation Tutorial for PDAF online with serial model

We demonstrate the implementation

of an online analysis step with PDAF

with a model that is parallelized

using the template routines provided by PDAF

The example code is part of the PDAF source code package
downloadable at http://pdaf.awi.de

(This tutorial is compatible with PDAF V2.1 and later)

http://pdaf.awi.de/

PDAF tutorial – Analysis step in online mode with a parallel model

Implementation Tutorial for PDAF online / parallel model

This is just an example!

For the complete documentation of PDAF’s interface

see the documentation

at http://pdaf.awi.de

PDAF tutorial – Analysis step in online mode with a parallel model

Overview

Focus on Error Subspace Transform Kalman Filter
(ESTKF, Nerger et al., Mon. Wea. Rev. 2012)

2 Parts
a) Global filter b) Localized filter

We recommend to first implement the global filter. The localized
filter re-uses routines of the global filter.

In this tutorial we only cover the case of a parallel model.
The implementation using a model without parallelization is
described in a separate tutorial.

We mark the differences to the case
without parallelization in blue

PDAF tutorial – Analysis step in online mode with a parallel model

Contents

PDAF tutorial – Analysis step in offline mode

0a) Files for the tutorial 6

0b) The model with parallelization 10

0c) State vector and observation vector 13

0d) PDAF online mode 16

0e) Inserting subroutine calls 22

0f) Forecast phase 32

1a) Global filter 43

1b) Local filter 63

2) Hints for adaptions for real models 81

PDAF tutorial – Analysis step in online mode with a parallel model

0a) Files for the Tutorial

PDAF tutorial – Analysis step in online mode with a parallel model

Tutorial implementation

Files are in the PDAF package

Directory:

/tutorial/online_2D_parallelmodel

• Fully working implementations of user codes

• PDAF core files are in /src
Makefile refers to it and compiles the PDAF library

• Only need to specify the compile settings (compiler, etc.) by
environment variable PDAF_ARCH. Then compile with ‘make’.

PDAF tutorial – Analysis step in online mode with a parallel model

Template files for online mode

Directory: /templates/online_omi

• Contains all required files

• Contains also
command line parser
(convenient but not required)

To generate your own implementation:
1. Copy content of directory

e.g. into sub-directory of model source code
2. Add calls to interface routines to model code
3. Complete user-routines for your model
4. Adapt compilation (e.g. Makefile) and compile
5. Run with assimilation options

PDAF tutorial – Analysis step in online mode with a parallel model

PDAF library

PDAF tutorial – Analysis step in offline mode

Directory: /src

• The PDAF library is not part of the template
• PDAF is compiled separately as a library

and linked when the assimilation program is compiled
• Makefile includes a compile step for the PDAF library
• One can also cd to /src and run ‘make’ there

(requires setting of PDAF_ARCH)

$PDAF_ARCH

• Environment variable to specify the compile specifications
• Definition files in /make.arch
• Define by, e.g.

setenv PDAF_ARCH linux_gfortran (tcsh/csh)
export PDAF_ARCH=linux_gfortran (bash)

PDAF tutorial – Analysis step in online mode with a parallel model

0b) The parallelized model

PDAF tutorial – Analysis step in online mode with a parallel model

5 10 15 20 25 30 35

5

10

15

True field, initial time

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

True field, step 9

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

True field, step 18

-1

-0.5

0

0.5

1

2D „Model“

• See the separate tutorial slides about the model

• Simple 2-dimensional grid domain

• 36 x 18 grid points (longitude x latitude)

• True state: sine wave in diagonal direction
(periodic for consistent time stepping)

PDAF tutorial – Analysis step in online mode with a parallel model

Parallel Model: Files

The source code of the parallel model consists of the following files:
• mod_model.F90
• mod_parallel_model.F90
• main.F90
• initialize.F90
• integrate.F90

Note: One can nicely compare the source codes of the model without
and with parallelization

For clarity, the implementation with PDAF is found in

• main_pdaf.F90

• integrate_pdaf.F90

It allows for easy comparison of the implementations

PDAF tutorial – Analysis step in online mode with a serial model

0c) state vector and observation vector

PDAF tutorial – Analysis step in online mode with a parallel model

State vector – some terminology used later

• PDAF performs computations on state vectors

• State vector
• Stores model fields in a single vector
• Tutorial shows this for one 2-dimensional field
• Multiple fields are just concatenated into the vector
• All fields that should be modified by the assimilation have to be

in the state vector

• State dimension
• Is the length of the state vector

(the sum of the sizes of the model fields in the vector)

• Ensemble array
• Rank-2 array which stores state vectors in its columns

PDAF tutorial – Analysis step in online mode with a parallel model

Observation vector

• Observation vector
• Stores all observations in a single vector
• Tutorial shows this for one 2-dimensional field
• Multiple observed fields are just concatenated into the vector

• Observation dimension
• Is the length of the observation vector

(sum of the observations over all observed fields in the vector)

• Observation operator
• Operation that computes the observed part of a state vector
• Tutorial only selects observed grid points
• The operation can involve interpolation or integration

depending on type of observation

PDAF tutorial – Analysis step in online mode with a parallel model

0d) PDAF online mode

PDAF tutorial – Analysis step in online mode with a parallel model

Online mode

• Combine model with PDAF into single program

• “model_pdaf”

• Add 3 subroutine calls:
init_parallel_pdaf - revise parallelization
init_pdaf - initialize assimilation
assimilate_pdaf - perform assimilation

• Implement user-supplied routines, e.g. for
• observation operator
• initialization of observation vector
• transfer between state vector and model fields

PDAF tutorial – Analysis step in online mode with a parallel model

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Do i=1, nsteps

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing
Model

Extension for
data assimilation

Aaaaaaaa

Aaaaaaaa

aaaaaaaa
a

Start

Stop

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

init_parallel_pdaf

Do i=1, nsteps

init_pdaf

assimilate_pdaf

Simulation Model Assimilation System

Legend

Initialize MPI
Initialize MPI

Program flow with model extended for data assimilation

PDAF tutorial – Analysis step in online mode with a parallel model

Fully parallel configuration

• Tutorial shows implementation for a fully parallel case

➜ Number of processes equals ensemble size times
number of processes used for a single model task!

• For a more flexible (and complicated) configuration see
PDAF’s online guide

PDAF tutorial – Analysis step in online mode with a parallel model

model_pdaf: General program structure

program main_pdaf

init_parallel_pdaf - initialize parallelization

initialize - initialize model information

init_pdaf - initialize parameters for PDAF
and read ensemble

integrate - time stepping loop

assimilate_pdaf - compute analysis step
(called inside stepping loop)

end program

Note:
In the example code, we use different files main.F90 and
main_pdaf.F90 to allow for easy comparison

PDAF tutorial – Analysis step in online mode with a parallel model

mod_assimilation.F90

Fortran module

• Declares the parameters used to configure PDAF

• Will be included (with ‘use’) in the user-written routines

• Additions to template necessary for observation handling

PDAF tutorial – Analysis step in online mode with a parallel model

0e) Inserting subroutine calls

PDAF tutorial – Analysis step in online mode with a parallel model

Where to insert subroutine calls?

init_parallel_pdaf

➜ at the start of the program, but after the MPI_Init performed
in the code of the parallel model

init_pdaf

➜ after the initialization of the model
i.e. directly before the time stepping loop

assimilate_pdaf

➜ Last operation in the time stepping loop
i.e. just before the ‘END DO’

Note: One can add the routines one after the other:
First insert init_parallel_pdaf and test the program, then add
init_pdaf, etc.

PDAF tutorial – Analysis step in online mode with a parallel model

init_parallel_pdaf.F90

• It is fully implemented template usable with small adaptions

• Required adaptions

• Include MPI variables from module of the model:
MPI_COMM_WORLD, COMM_model, mype_model, npes_model
(the latter three variables might be named differently in a model)

• init_parallel_pdaf defines a model communicator
comm_model
(actually it’s a set for communicators, one for each model task)

• Set communicator of the parallel model to comm_model at the end
if init_parallel_pdaf:
“my_models_communicator” = comm_model
(include my_models_communicator from module of model)

• Set variables for number of processes in model and rank of a
process (npes_model, mype_model) at end of routine

PDAF tutorial – Analysis step in online mode with a parallel model

init_parallel_pdaf.F90 (2)

• Parallelization variables for PDAF are declared in Fortran
module

mod_parallel_pdaf

• Important variable:
n_modeltasks

• Defines number of concurrent model integrations.

• Has to be equal to ensemble size

• In the example: Read as ‘dim_ens’ from command line
(using subroutine ‘parse’)

• Important: If the parallel model uses MPI_COMM_WORLD, this
has to be replaced! (MPI_COMM_WORLD denotes always all
processes in the program)

PDAF tutorial – Analysis step in online mode with a parallel model

init_parallel_pdaf.F90 (3) - Example

The routine initializes 3 groups of communicators
• COMM_model: Used to run the parallel model forecasts
• COMM_filter: Used to compute the filter
• COMM_couple: Coupling between model and filter processes
These are provided to PDAF when calling PDAF_init

The figure shows an example
• 12 processes in total
• 3 model tasks in parallel
• Each model task uses 4

processes in its COMM_model
• Each COMM_couple links groups

of 3 processes to distribute and
collect ensemble states

• The filter processes use model task 1

init_parallel_pdaf is coded to provide this configuration when
running with 12 processes and setting dim_ens=3

PDAF tutorial – Analysis step in online mode with a parallel model

init_pdaf.F90

Routine sets parameters for PDAF, calls PDAF_init
to initialize the data assimilation, and calls PDAF_get_state to
prepare the ensemble integrations:

Template contains list of available parameters
(declared in and used from mod_assimilation)

Independent of the filter algorithm:
• Include information on size of model fields from model
• Define dimension of decomposed state vector

dim_state_p = nx_p * ny

In call to PDAF_init, the name of the user-supplied routine for
ensemble initialization routine is specified:

init_ens_pdaf

PDAF tutorial – Analysis step in online mode with a parallel model

init_pdaf.F90 (II)

In call to PDAF_get_state, the names of 3 user-supplied routines
are specified:

next_observation_pdaf
- Set number of time steps
in forecast phase

distribute_state_pdaf
- Initialize model fields from state

vector

prepoststep_ens_pdaf
- poststep routine (compute estimated
errors, write state estimate, etc.)

Initially, one can just copy the template routines. One can adapt
them later to the particular application.

PDAF tutorial – Analysis step in online mode with a parallel model

assimilate_pdaf.F90

Routine just calls an interface routine like

PDAFomi_assimilate_global

We don’t insert PDAFomi_assimilate_global directly into the
model code

➜ because, we need to declare all user-supplied routines as
‘EXTERNAL’. This could clutter the model code.

Filter-specific user routines are described next. Initially, one can just
copy the template routines.

Note: The template contains calls for all filters

PDAF tutorial – Analysis step in online mode with a parallel model

Differences online and offline

• If you’ve studied the tutorial for offline mode

Offline
• Separate programs for

model and assimilation
• Needed to implement

routine intialize

• Grid dimensions declared in
mod_assimilation

• Ensemble information read
from files

• mod_assimilation
contains all field and
assimilation variables

Online
• Extend model program for

assimilation
• Operations in initialize

given by model; no changes
for assimilation!

• Grid dimensions defined in
model code (mod_model)

• Ensemble information
provided by model fields

• mod_assimilation only
contains variables for
assimilation

PDAF tutorial – Analysis step in online mode with a parallel model

Optional routine: finalize_pdaf.F90

Call to finalize_pdaf can be inserted at the end of the model

Routine contains two calls to PDAF_print info:

CALL PDAF_print_info(2)

– display information on allocated memory inside PDAF

CALL PDAF_print_info(1)

– display timing information
(values 3 and 4 also possible for more detailed timers)

Note: finalize_pdaf only prints the information for mype_world==0

In addition there is

CALL PDAF_deallocate()

which deallocates internal arrays in PDAF

PDAF tutorial – Analysis step in online mode with a parallel model

0f) Forecast phase

PDAF tutorial – Analysis step in online mode with a parallel model

Files for PDAF

Template contains all required files

 just need to be filled with functionality

init_pdaf.F90

init_ens_pdaf.F90

next_observation_pdaf.F90

distribute_state_pdaf.F90

collect_state_pdaf.F90

callback_obs_pdafomi.F90

obs_A_pdafomi.F90

prepoststep_ens_pdaf.F90

initialization

analysis step

post step

ensemble
forecast

PDAF tutorial – Analysis step in online mode with a parallel model

init_pdaf.F90

Routine sets parameters for PDAF and calls PDAF_init
to initialize the data assimilation:

Template contains list of available parameters
(declared in and used from mod_assimilation)

Include variables for observation ‘A’ with
USE obs_A_pdafomi, ONLY: assim_A, rms_obs_A

For the example set :

1. dim_ens = 9

2. rms_obs_A = 0.5

3. assim_A = .true.

3. filtertype = 6 (for ESTKF)

4. delt_obs = 2 (assimilate afer each 2nd time step)

In call to PDAF_init, the name of the ensemble initialization
routine is specified: init_ens_pdaf

PDAF tutorial – Analysis step in online mode with a parallel model

init_ens_pdaf.F90

A call-back routine called by PDAF_init:

• Implemented by the user
• Its name is specified in the call to PDAF_init
• It is called by PDAF through a defined interface:

SUBROUTINE init_ens_pdaf(filtertype, dim_p,
dim_ens, state_p, Uinv, ens_p, flag)

Declarations in header of the routine shows “intent” (input, output):

REAL, INTENT(out) :: ens_p(dim_p, dim_ens)

Note:
All call-back routines have a defined interface and show the intent of
the variables. Their header comment explains what is to be done in
the routine.

PDAF tutorial – Analysis step in online mode with a parallel model

init_ens_pdaf.F90 (2)

Initialize ensemble matrix ens_p for the start time of the assimilation

1. Include nx, ny, nx_p with use mod_model

2. Declare and allocate real :: field(ny, nx)

3. Loop over ensemble files (i=1,dim_ens)

for each file:

• read ensemble state into field

• store local part of field in column i of ens_p
(columns nx_p*mype_model+1 : nx_p*mype_model+nx_p)

4. Deallocate field

Note:
Columns of ens_p are state vectors. Store following
storage of field in memory (column-wise in Fortran)

PDAF tutorial – Analysis step in online mode with a parallel model

The forecast phase

At this point the initialization of PDAF is complete:
• Initial Ensemble of model states is initialized
• Filter algorithm and its parameters are chosen

Next:

• Implement user-routines for forecast phase

• All are call-back routines:

 User-written, but called by PDAF

Note:
Some variables end with _p.
It means that the variable is specific for a process
(its values are different for each process)

PDAF tutorial – Analysis step in online mode with a parallel model

next_observation_pdaf.F90

Routine to

• Set number of time steps in next forecast phase

• Set flag to control exit from forecasts (doexit)

Most simple setting:

include delt_obs from mod_assimilation

nsteps = delt_obs

doexit = 0

Note: The assimilation program stops when the maximum number
of time steps of the model is reached, even if doexit=0

PDAF tutorial – Analysis step in online mode with a parallel model

next_observation_pdaf.F90 (II)

More sophisticated setting:

• Utilize stepnow (current time step) and total_steps
(total number of time steps given by model).

IF (stepnow + nsteps <= total_steps) THEN

nsteps = delt_obs ! Forecast length
doexit = 0 ! Continue assimilation

ELSE

nsteps = 0 ! No more steps
doexit = 1 ! Exit assimilation

END IF

Note: In the example doexit=1 is used only inside PDAF and
avoids some screen output.

PDAF tutorial – Analysis step in online mode with a parallel model

distribute_state_pdaf.F90

Routine to

• Initialize model fields from a state vector

• Routine is provided with the state vector vector_p

For the example:

1. Access nx_p, ny and field_p with use mod_model

2. Initialize model field from state vector:

DO j = 1, nx_p

field_p(1:ny, j) = state_p(1+(j-1)*ny : j*ny)

END DO

PDAF tutorial – Analysis step in online mode with a parallel model

prepoststep_ens_pdaf.F90

Post-step routine for the online mode:

Already there in the template:
1. Compute ensemble mean state state_p
2. Compute estimated variance vector variance
3. Compute estimated root mean square error rmserror_est

Possible extensions:

4. Write analysis state (ensemble mean, state_step*_ana.txt)

5. Write analysis ensemble into files
(Analogous to reading in init_ens_pdaf)

6. Analogously one can write the forecast fields

PDAF tutorial – Analysis step in online mode with a parallel model

Completion of forecast phase

At this point the implementation of the forecast phase is practically
complete:

• Initial ensemble and PDAF’s parameters are set
• The ensemble forecast can be computed

One can now compile the program model_pdaf (make model_pdaf)
to check whether it runs.
Note: It is recommended to compile PDAF with –
DPDAF_NO_UPDATE at this point as the routine for the analysis
step are not yet implemented.

Note: For now, prepoststep_ens_pdaf only lets you test the
initial ensemble. Testing the forecast fields need implementation of
routine collect_state_pdaf

PDAF tutorial – Analysis step in online mode with a parallel model

1a) Global filter

PDAF tutorial – Analysis step in online mode with a parallel model

Running the tutorial program

• cd to /tutorial/online_2D_serialmodel

• Set environment variable PDAF_ARCH or set it in Makefile
(e.g. linux_gfortran_openmpi)

• Compile by running ‘make model_pdaf’
(next slide will discuss possible compile issues)

• Run the program with
mpirun –np 18 ./model_pdaf –dim_ens 9

• Inputs are read in from /tutorial/inputs_online

• Outputs are written in /tutorial/online_2D_parallelmodel

• Plot result, e.g. with ‘octave’:

load state_step10_ana.txt

pcolor(state_step10_ana)

PDAF tutorial – Analysis step in online mode with a parallel model

Requirements for compiling PDAF

PDAF requires libraries for BLAS and LAPACK

• Libraries to be linked are specified in the include file for make
in /make.arch (file according to PDAF_ARCH)

• For $PDAF_ARCH=linux_gfortran_openmpi the specification is

LINK_LIBS =-L/usr/lib -llapack -lblas -lm

• If the libraries are at another non-default location, one has to change
the directory name (/usr/lib)

• Some systems or compilers have special libraries
(e.g. MKL for ifort compiler, or ESSL on IBM/AIX)

PDAF needs to be compiled for double precision

• Needs to be set at compiler time in the include file for make:

• For gfortran: OPT = -O3 -fdefault-real-8

PDAF tutorial – Analysis step in online mode with a parallel model

Files in the tutorial implementation

/tutorial/inputs_online

• true_stepY.txt true state

• state_ini.txt initial estimate (ensemble mean)

• obs_stepY.txt observations

• ens_X.txt initial ensemble members

/tutorial/online_2D_parallelmodel (after running model_pdaf)

• state_stepY_ana.txt analysis state estimate

• ens_X_stepY_ana.txt analysis ensemble members

X=1,…,9: ensemble member index

Y=1,…,18: time step index

Note: Files *_for.txt contain forecast fields

PDAF tutorial – Analysis step in online mode with a parallel model

5 10 15 20 25 30 35

5

10

15

Step 10: State without assimilation

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

Step 10: Analysis state with assimilation

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

Step 10: Difference assimilation - truth

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Result of the global assimilation

For example, at step 10

• The analysis state (center) is closer to the true field than without
assimilation (left)

• Truth and analysis are nearly identical (right)
(this is a special result caused by the chosen ensemble. A smaller
ensemble (dim_ens 4) leads to much higher difference)

PDAF tutorial – Analysis step in online mode with a parallel model

The analysis step

Next: Implement user-routines for the analysis step

The analysis step needs several user-supplied routines
for operations like

• write forecast model fields into state vector

• determine number of available observations

• observation operator acting on a state vector

• initialization of the vector of observations

PDAF tutorial – Analysis step in online mode with a parallel model

collect_state_pdaf.F90

Routine to

• Fill state vector with forecasted model fields

• Routine is provided with the state vector vector_p

For the example:

1. Access nx, ny and field with use mod_model

2. Initialize state vector from model field:
DO j = 1, nx_p

state_p(1+(j-1)*ny : j*ny) = field_p(1:ny, j)

END DO

Note: The routine is independent of the filter!

PDAF tutorial – Analysis step in online mode with a parallel model

callback_obs_pdafomi.F90

File collecting interface routines for the observation routines called by PDAF

For each observation type we need to add subroutine calls

• Example observation is just called A, defined in obs_A_pdafomi.F90

In init_dim_obs_pdafomi:
• Insert USE obs_A_pdafomi, ONLY: assim_A, init_dim_obs_A
• Declare INTEGER :: dim_obs_A and set this to zero
• Insert IF (assim_A) CALL init_dim_obs_A(step, dim_obs_A)

In obs_op_pdafomi:
• Insert USE obs_A_pdafomi, ONLY: obs_op_A
• Insert CALL obs_op_A(dim_p, dim_obs, state_p, ostate)

(The other observations (B, C) in the file show
how to use multiple observations)

PDAF tutorial – Analysis step in online mode with a parallel model

obs_A_pdafomi.F90

PDAF-OMI observation module

• There is a long header with information

Implementation steps from template

• Copy file to name according to observation (’A’)

• Replace ‘OBSTYPE’ by name of observation (’A’)

• Implement
• init_dim_obs_A

• obs_op_A

PDAF tutorial – Analysis step in online mode with a parallel model

obs_A_pdafomi.F90 (2)

With PDAF-OMI

• Observation Information is stored in Fortran data type obs_f

• It is allocated with generic name thisobs
(Motivated by object-oriented programming)

• A single variable, e.g. disttype, is accessed in the form
thisobs%disttype

TYPE obs_f
INTEGER :: doassim ! Whether to assimilate this obs. type
INTEGER :: disttype ! Type of distance computation
INTEGER :: ncoord ! Number of coordinates
INTEGER, ALLOCATABLE :: id_obs_p(:,:)

! Indices of observations in state vector
…

END TYPE obs_f

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_A in obs_A_pdafomi.F90

Main routine to initialize observation information

• read observation file

• count number of available observations
(direct output to PDAF: dim_obs_p)

• initialize array holding available observations

• initialize array of index of observation in global state vector

• Call PDAFomi_gather_obs to finalize initializations

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_A in obs_A_pdafomi.F90 (2)

First initializations:

• Specify whether observation is assimilated

IF (assim_A) thisobs%doassim = 1

(assim_A is included with use and set in init_pdaf)

• Specify type of distance computation (0=Cartesian)

thisobs%disttype = 0

• Number of coordinates used for distance computation

thisobs%ncoord = 2

Note: Parts of the template that are not needed
here are deleted from init_dim_obs_A

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_A in obs_A_pdafomi.F90 (3)

Preparations and reading of observation file:
1. Include nx, ny, nx_p with use mod_model
2. declare and allocate real array obs_field(ny, nx)

3. Get offset of local part in global state vector
off_p = Sum over nx_p*ny up to i=mype_filter

4. read observation file for current time step:

Initialize string ‘stepstr’ for time step

OPEN (12, &
file='inputs_online/obs’//stepstr//’.txt’, &
status='old')

DO i = 1, ny
READ (12, *) obs_field(i, :)

END DO
CLOSE (12)

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_A in obs_A_pdafomi.F90 (4)

Count available process-local observations (dim_obs_p):

1. Declare integer :: cnt0, cnt_p

2. Now count

cnt0 = 0
cnt_p = 0
DO j = 1, nx

DO i= 1, ny
cnt0 = cnt0 + 1
IF (cnt0>off_p .AND. cnt0<=off_p+nx_p*ny) THEN

IF (obs_field(i,j) > -999.0) cnt_p = cnt_p + 1
END IF; END DO; END DO
dim_obs_p = cnt_p

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_A in obs_A_pdafomi.F90 (5)

Now we need to initialize
• observation vector obs_p
• inverse variances ivar_obs_p
• index array thisobs%id_obs_p
• observation coordinates ocoord_p

1. All arrays are declared in the template

2. Allocate
• obs_p(dim_obs_p)
• ivar_obs_p(dim_obs_p)
• thisobs%id_obs_p(dim_obs_p)
• ocoord_p(2, dim_obs_p)

3. Initialize these arrays

Note:
The arrays only contain information about valid observations;
one could store observations already in files in this way.

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_pdaf.F90 (6)

3. Now initialize

cnt0_p = 0 ! Count grid points
cnt_p = 0 ! Count observations
DO j = 1 + off_nx, nx_p + off_nx
DO i= 1, ny

cnt0_p = cnt0_p + 1
IF (obs_field(i,j) > -999.0) THEN
cnt_p = cnt_p + 1
thisobs%id_obs_p(cnt_p) = cnt0_p ! Index
obs_p(cnt_p) = obs_field(i, j) ! observations
ocoord_p(1, cnt_p) = REAL(j) ! X-coordinates
ocoord_p(2, cnt_p) = REAL(i) ! Y-coordinates

END IF
END DO

END DO
ivar_obs_p(:) = 1.0 / (rms_obs_A*rms_obs_A)

PDAF tutorial – Analysis step in online mode with a parallel model

obs_op_A in obs_A_pdafomi.F90

Implementation of observation operator
acting one some state vector

Input: state vector state_p

Output: observed state vector ostate

init_dim_obs_A initialized all required information stored in ‘thisobs’

Observation ‘A’ is defined at grid points

1. Include observation operator routine:

USE PDAFomi, ONLY: PDAFomi_obs_op_gridpoint

2. Call observation operator

CALL PDAFomi_obs_op_gridpoint(thisobs, state_p, ostate)

Note: OMI provides different observation operators,
e.g. for linear interpolation

PDAF tutorial – Analysis step in online mode with a parallel model

prepoststep.F90

PDAF-Omi required one small change in prepoststep:

We need to deallocate OMI internal arrays:

For this we insert at the end of the routine

CALL deallocate_obs_pdafomi(step)

(The routine is included by calback_obs_pdafomi.F90)

PDAF tutorial – Analysis step in online mode with a parallel model

Done!

The analysis step in online mode with the parallelized model is
fully implemented now

The implementation allows you now to use all global filters!
(ESTKF, EKTF, SEIK, EnKF, NETF, PF)

Not usable is SEEK (It’s deprecated)

PDAF tutorial – Analysis step in online mode with a parallel model

A complete analysis step

We now have a fully functional analysis step
- if no localization is required!

Possible extensions for a real application:

Adapt routines for

 Multiple model fields
➜ Store full fields consecutively in state vector

 Third dimension
➜ Extend state vector

 Different observation types
➜ Tutorial code shows example of 2 observation types

 Other file type (e.g. binary or NetCDF)
➜ Adapt reading/writing routines

PDAF tutorial – Analysis step in online mode with a parallel model

Differences between online and offline modes

For the analysis step in online mode:

collect_state_pdaf - additional routine for online mode

callback_obs_pdafomi.F90
- identical in online and offline modes

obs_A_pdafomi.F90:

init_dim_obs_A - read from file for current time step;
include nx, ny from mod_model
instead of mod_assimilate; use
local_dims to compute offset

obs_op_pdaf - identical in online and offline modes

PDAF tutorial – Analysis step in online mode with a parallel model

1b) Local filter with parallelized model

PDAF tutorial – Analysis step in online mode with a parallel model

Localization

Localization is usually required for high-dimensional systems

• Update small regions (S)
(e.g. single grid points, single vertical columns)

• Consider only observations within cut-off distance (D)

• Weight observations according to distance from S

PDAF tutorial – Analysis step in online mode with a parallel model

The FULL observation vector

• A single local analysis at S (single grid point) need observations
from domain D

• A loop of local analyses over all S needs all observations

• This defines the full observation vector

• Why distinguish full and all observations?

➜ They can be different in case of parallelization!

• Example:

 Split domain in left and right halves

 Some of the analyses in left half
need observations from the right side.

 Depending on localization radius not all observations from
the right side might be needed for the left side analyses

PDAF tutorial – Analysis step in online mode with a parallel model

Running the tutorial program

• Compile as for the global filter
• Run the program with

mpirun –np 18 ./model_pdaf –dim_ens 9 OPTIONS

• OPTIONS are always of type –KEYWORD VALUE

• Possible OPTIONS are
-filtertype 7 (select LESTKF if not set in init_pdaf)
-cradius 5.0 (set localization radius, 0.0 by default, any

positive value should work)
-locweight 2 (set weight function for localization, default=0

for constant weight of 1; possible are integer
values 0 to 4; see init_pdaf)

Note: You can run the model e.g. using 18 MPI-processes even on most
computers with only 2 processor cores. However, to see a speedup in
computing time, you need more physical processors

PDAF tutorial – Analysis step in online mode with a parallel model

Result of the local assimilation

mpirun –np 18 ./model_pdaf –dim_ens 9 -filtertype 7

• Default: zero localization radius (cradius=0.0)

• Change only at observation locations

5 10 15 20 25 30 35

5

10

15

Step 10: State without assimilation

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

Step 10: Analysis state from assimilation

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

Step 10: Difference assimilation - truth

-1.5

-1

-0.5

0

0.5

1

1.5

PDAF tutorial – Analysis step in online mode with a parallel model

5 10 15 20 25 30 35

5

10

15

Step 10: State without assimilation

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

Step 10: Analysis state from assimilation

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

Step 10: Difference assimilation - truth

-0.6

-0.4

-0.2

0

0.2

0.4

Result of the local assimilation (2)

… -filtertype 7 -cradius 10.0

• All local analysis domains are influenced (all see observations)

• Up to 16 observations in a single local analysis (average 9.6)

Note: The set up of the experiment favors the global filter
because of the shape of the ensemble members

PDAF tutorial – Analysis step in online mode with a parallel model

Result of the local assimilation (2)

… -filtertype 7 -cradius 10.0 –locweight 2

• Observation weighting by 5th-order polynomial

• Analysis field is smoother than before (because of weighting)

• The high errors on the left are due to the distance of observations

5 10 15 20 25 30 35

5

10

15

Step 10: State without assimilation

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

Step 10: Difference assimilation - truth

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

Step 10: Analysis state from assimilation

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

PDAF tutorial – Analysis step in online mode with a parallel model

5 10 15 20 25 30 35

5

10

15

Step 10: State without assimilation

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35

5

10

15

Step 10: Difference assimilation - truth

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

5 10 15 20 25 30 35

5

10

15

Step 10: Analysis state from assimilation

-1

-0.5

0

0.5

1

Result of the local assimilation (3)

… -filtertype 7 -cradius 40.0

• Large radius: All local analysis domains see all observations

• Result identical to global filter

PDAF tutorial – Analysis step in online mode with a parallel model

Local filter LESTKF

• Localized filters are a variant of the global filters

• User written files for global filter can be widely re-used

• Additional user-written files to handle local part

• No changes to:

initialize.F90

init_ens_pdaf.F90

prepoststep_ens_pdaf.F90

• Change in init_pdaf.F90:

Set filtertype = 7

(You can also set it later on command line)

PDAF tutorial – Analysis step in online mode with a parallel model

Local filter LESTKF (2)

Additional files for local analysis step

init_n_domains_pdaf.F90

init_dim_l_pdaf.F90

g2l_state_pdaf.F90

l2g_state_pdaf.F90

Additional routine in callback_obs_pdafomi.F90:

init_dim_obs_l_pdafomi

Discuss now the files in the order they are called

localize
state vector

localize
observations

PDAF tutorial – Analysis step in online mode with a parallel model

init_n_domains_pdaf.F90

Routine to set the number of local analysis domains

Output: n_domains_p
For the example: number of process-local grid points (nx_p * ny)

To do:
1. Include nx_p, ny with use mod_model

2. Set
n_domains_p = nx_p * ny

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_l_pdaf.F90

Set the vector size dim_l of the local analysis domain

Further set the coordinates of the local analysis domain and the
indices of the elements of the local state vector in the global state
vector

Each single grid point is a local analysis domain in the example

1. Set dim_l = 1

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_l_pdaf.F90 (2)

2. Determine coordinates of local analysis domain

1. Compute offset:

off_p = Sum over nx_p*ny up to i=mype_filter

2. Include coords_l with use mod_assimilation

3. Include nx, ny, nx_p with use mod_model

4. Compute coords_l from nx, ny:

coords_l(1)
= real(ceiling(real(domain_p + off_p)/real(ny)))

coords_l(2)
= real(domain_p + off_p) - (coords_l(1)-1)*ny

Note: With parallelization the domain numbering begins with 1 for each
process. For the coordinates we also need to count the domains from
processes with lower process rank using off_p

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_l_pdaf.F90 (3)

3. Set indices of the elements of the local state vector in the global
decomposed state vector

a) Include id_lstate_in_pstate
with use mod_assimilation

b) Allocate id_lstate_in_pstate(dim_l)
(Deallocate first if already alloced)

c) Specify the index: It’s identical to domain_p here
(because we only have a single model variable)

id_lstate_in_pstate(1) = domain_p

PDAF tutorial – Analysis step in online mode with a parallel model

callback_obs_pdafomi.F90

File collecting interface routines for the observation routines called by PDAF

For each observation type we need to add subroutine calls

• The example observation is just called A, defined in obs_A_pdafomi.F90

In init_dim_obs_l_pdafomi:
• Insert
USE obs_A_pdafomi, ONLY: init_dim_obs_l_A

• Insert
CALL init_dim_obs_l_A(domain_p, step, dim_obs, dim_obs_l)

(The other observations (B, C) in the file show
how to use multiple observations)

PDAF tutorial – Analysis step in online mode with a parallel model

init_dim_obs_l_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Set size of the observation vector for the local analysis domain and initialize local
observation information

Only direct output: dim_obs_l

Operations:

1. With use mod_assimilation

• Include coordinates coords_l

• Include localization variables (cradius, locweight, sradius)

2. Call PDAFomi_init_dim_obs_l to perform necessary operations

Note: we use a fixed radius cradius here. One could make it varying with the local
analysis domain. Also it could vary with observation type.

PDAF tutorial – Analysis step in online mode with a parallel model

g2l_state_pdaf.F90 & l2g_state_pdaf.F90

g2l_state_pdaf: Initialize state vector for local analysis domain
from global state vector

l2g_state_pdaf: Initialize global state vector
from state vector for local analysis domain

 The templates provide a generic implementation
using the array id_lstate_in_fstate

➜ We use the templates without any changes!

PDAF tutorial – Analysis step in online mode with a parallel model

Done!

Now, the analysis step for local ESKTF in offline mode is fully
implemented.

The implementation allows you now to use all local filters!
(LESTKF, LETKF, LSEIK, LNETF)

Not usable is LEnKF
(It needs one more routine (localize_covariance_pdafomi) which we
don’t discuss here; but it’s coded in the tutorial code)

For testing one can vary localization parameters:

cradius – the localization cut-off radius

locweight – the weighting method

Default are cradius=0.0 (observation at single grid point) and
locweight=1 (uniform weight)

PDAF tutorial – Analysis step in online mode with a serial model

2) Hints for adaptions for real models

PDAF tutorial – Analysis step in online mode with a parallel model

Implementations for real models

• Tutorial demonstrates implementation for simple model

• You can base your own implementation on the tutorial
implementation or the templates provided with PDAF

• Need to adapt most routines, e.g.

• Specify model-specific state vector and its dimension

• Adapt distribute_state and collect_state

• Adapt routines handling observations

• Further required changes

• Adapt file output (usually only want to write ensemble mean
state in prepoststep_pdaf; sometimes possible to use
output routines from model)

PDAF tutorial – Analysis step in online mode with a parallel model

Adaptation for 2 fields in state vector

• Both field should be updated by the assimilation
have to be part of the state vector

➜ see tutorial for online mode with serial model
for example of 2 fields

• For two or more fields:

• concatenate them in the state vector

• adapt state dimension in init_pdaf

• Add arrays for field offsets and dimensions in init_pdaf

• adapt init_ens_pdaf, collect_state_pdaf,
distribute_state_pdaf, prepoststep_pdaf

• For local filters: Adapt init_dim_l_pdaf

• Adapt observation modules
(in particular thisobs%is_obs_p)

Fi
el

d
1

Fi
el

d
2

State vector
with 2 fields

PDAF tutorial – Analysis step in online mode with a parallel model

Multiple observed fields

• In tutorial:

• We discussed observations of one field at some grid points
• Example code shows three different observation types

• For several observed fields adapt observation routines:

• Create a new observation module (obs_OBSTYPE_pdafomi.F90)
• Add calls to routine in callback_obs_pdafomi.F90

• Note
• The observation errors can be set differently for each observed field

• The localization radius can be set specific for each observed field (use
a different variable cradius_OBSTYPE)

PDAF tutorial – Analysis step in online mode with a parallel model

The End!

Tutorial described example implementations

• Online mode of PDAF

• Simple 2D model with parallelization

• Parallelization over ensemble members at the model itself

• Implementation supports various filters

• global and with localization

• Extension to more realistic cases possible with limited coding

• Applicable also for large-scale problems

For full documentation of PDAF
and the user-implemented routines

see http://pdaf.awi.de

