PDAF Tutorial

Implementation of the analysis step
in online mode with a parallel model
We demonstrate the implementation of an online analysis step with PDAF with a model that is parallelized using the template routines provided by PDAF.

The example code is part of the PDAF source code package downloadable at http://pdaf.awi.de.
This is just an example!

For the complete documentation of PDAF’s interface see the documentation at http://pdaf.awi.de
Overview

Focus on Error Subspace Transform Kalman Filter

4 Parts

- a) Global filter
- b) Localized filter

We recommend to first implement the global filter. The localized filter re-uses routines of the global filter.

In this tutorial we only cover the case of a parallel model. The implementation using a model without parallelization is described in a separate tutorial.
0a) Files for the Tutorial
Files are in the PDAF package

Directory:
/tutorial/online_2D_parallelmodel

- Fully working implementations of user codes
- PDAF core files are in /src
 Makefile refers to it and compiles the PDAF library
- Only need to specify the compile settings (compiler, etc.) by environment variable PDAF_ARCH. Then compile with 'make'.
Template files for online mode

Directory: /templates/online
- Contains all required files
- Contains also command line parser (convenient but not required)

To generate your own implementation:
1. Copy content of directory e.g. into sub-directory of model source code
2. Add calls to interface routines to model code
3. Complete user-routines for your model
4. Adapt compilation (e.g. Makefile) and compile
5. Run with assimilation options
PDAF library

Directory: /src

- The PDAF library is not part of the template
- PDAF is compiled separately as a library and linked when the assimilation program is compiled
- Makefile includes a compile step for the PDAF library
- One can also cd to /src and run ‘make’ there (requires setting of PDAF_ARCH)

$PDAF_ARCH

- Environment variable to specify the compile specifications
- Definition files in /make.arch
- Define by, e.g.
 - setenv PDAF_ARCH linux_gfortran (tcsh/csh)
 - export PDAF_ARCH=linux_gfortran (bash)
0b) The parallelized model
Simple assimilation problem

- 2-dimensional model domain
- One single field (like temperature)
- Direct measurements of the field
- Data gaps (i.e. data at selected grid points)
- Same error estimate for all observations
- Observation errors are not correlated (diagonal observation error covariance matrix)
- Simple time stepping:
 Shift field in vertical direction one grid point per time step
2D „Model“

- Simple 2-dimensional grid domain
- 36 x 18 grid points (longitude x latitude)
- True state: sine wave in diagonal direction (periodic for consistent time stepping)
- Simple time stepping:
 Shift field in vertical direction one grid point per time step
- Stored in text files (18 rows) — true_step*.txt
Model parallelization

- tutorial/online_2D_parallelmodel contains the parallelized 2D model

- Parallelization:
 - Distribute in direction of second index: \(nx \rightarrow nx_p \)
 - Each process holds a part of the model field (size \(ny \times nx_p \))
 - Disk files hold the global field; the information is distributed after reading and collected before a single process writes
Parallel Model: General Program Structure

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>program main</code></td>
<td></td>
</tr>
<tr>
<td><code>init_parallel</code></td>
<td>initialize MPI parallelization</td>
</tr>
<tr>
<td><code>initialize</code></td>
<td>initialize model information:</td>
</tr>
<tr>
<td></td>
<td>- set dimensions</td>
</tr>
<tr>
<td></td>
<td>- allocate model field array</td>
</tr>
<tr>
<td></td>
<td>- read initial field</td>
</tr>
<tr>
<td><code>integrate</code></td>
<td>perform time stepping:</td>
</tr>
<tr>
<td></td>
<td>- shift model field</td>
</tr>
<tr>
<td></td>
<td>- write new model field</td>
</tr>
<tr>
<td><code>finalize_parallel</code></td>
<td>end MPI-parallel region</td>
</tr>
<tr>
<td><code>end program</code></td>
<td></td>
</tr>
</tbody>
</table>
Model: Shared variables

Shared variables are declared in Fortran module (mod_model.F90)

MODULE mod_model
...
 INTEGER :: nx, ny ! Size of 2D grid
 INTEGER :: total_steps ! Total number of time steps
 REAL, ALLOCATABLE :: field(:,:,,:) ! Model field
 INTEGER :: nx_p ! Local size in x-direction
END MODULE mod_model

• Included with ‘use’ in initialize and integrate
Model: Shared variables for parallelization

Shared variables for parallelization are declared in Fortran module (mod_parallel_model.F90)

```fortran
MODULE mod_parallel_model
  ...
  INTEGER :: COMM_model  ! MPI communicator for model tasks
  INTEGER :: mype_model  ! Number of processes in COMM_model
  INTEGER :: npes_model  ! Process rank in COMM_model
  INTEGER :: mype_world  ! Number of PEs in MPI_COMM_WORLD
  INTEGER :: npes_world  ! Process rank in MPI_COMM_WORLD
  INTEGER :: MPIerr      ! Error flag for MPI
END MODULE mod_parallel_model
```

PDAF tutorial – Analysis step in online mode with a parallel model
Parallel Model: Files

The source code of the parallel model consists of the following files:

- mod_model.F90
- mod_parallel_model.F90
- main.F90
- initialize.F90
- integrate.F90

Note: One can nicely compare the source codes of the model without and with parallelization.

For clarity, the implementation with PDAF is found in

- main_pdaf.F90
- integrate_pdaf.F90

It allows for easy comparison of the implementations.
Running the parallel tutorial model

- cd to /tutorial/online_2D_parallelmodel
- You need to compile with an MPI library!
- Set environment variable `PDAF_ARCH` or set it in Makefile (e.g. `linux_gfortran_openmpi`)
- Compile by running `make model`
- Run the program with `mpirun -np 4 ./model`
- Note: The model can be run with 2, 3, 4, 6 or 9 processes (These numbers allow for a uniform distribution of nx=36)

- Inputs are read in from /tutorial/inputs_online
- Outputs are written in /tutorial/online_2D_parallelmodel
Observations

- Add random error to true state (standard deviation 0.5)
- Select a set of observations at 28 grid points
- File storage (in inputs_online):
 text file, full 2D field, -999 marks ‘no data’ – obs_step*.txt
 one file for each time step
Ensemble

- Prepared 9 ensemble state files
- Sine waves shifted along diagonal (truth not included)
- One text file per ensemble member – ens_*.txt (in inputs_online)
Ensemble states at initial time
Differences model with and without parallelization

Serial model
- Global field dimensions nx, ny
- Global model field ‘field(ny, nx)’
- No particular condition for screen output
- Compile without MPI-Library

Parallel model
- Global dimensions nx, ny; process local dimension nx_p
- Global field distributed as sub-fields ‘field_p(ny, nx_p)’
- Screen and file output for process with ‘mype_world==0’
- Compile with MPI-Library
0c) state vector and observation vector
State vector – some terminology used later

- **PDAF** performs computations on state vectors

State vector
- Stores model fields in a single vector
- Tutorial shows this for one 2-dimensional field
- Multiple fields are just concatenated into the vector
- All fields that should be modified by the assimilation have to be in the state vector

State dimension
- Is the length of the state vector (the sum of the sizes of the model fields in the vector)

Ensemble array
- Rank-2 array which stores state vectors in its columns
Observation vector

- **Observation vector**
 - Stores all observations in a single vector
 - Tutorial shows this for one 2-dimensional field
 - Multiple observed fields are just concatenated into the vector

- **Observation dimension**
 - Is the length of the observation vector
 (sum of the observations over all observed fields in the vector)

- **Observation operator**
 - Operation that computes the observed part of a state vector
 - Tutorial only selects observed grid points
 - The operation can involve interpolation or integration depending on type of observation
0c) PDAF online mode
Online mode

- Combine model with PDAF into single program
 - "model_pdaf"

- Add 3 subroutine calls:
 - `init_parallel_pdaf` - revise parallelization
 - `init_pdaf` - initialize assimilation
 - `assimilate_pdaf` - perform assimilation

- Implement user-supplied routines, e.g. for
 - observation operator
 - initialization of observation vector
 - transfer between state vector and model fields

PDAF tutorial – Analysis step in online mode with a parallel model
Program flow with model extended for data assimilation

Simulation Model

Start

Initialize MPI

Initialize Model
generate mesh
Initialize fields

Do i=1, nsteps

Time stepper
consider BC
Consider forcing

Post-processing

Stop

Assimilation System

Start

Initialize MPI

init_parallel_pdaf

Initialize Model
generate mesh
Initialize fields

init_pdaf

Do i=1, nsteps

Time stepper
consider BC
Consider forcing

assimilate_pdaf

Post-processing

Stop

Legend

Model

Extension for data assimilation

PDAF tutorial – Analysis step in online mode with a parallel model
Fully parallel configuration

• Tutorial shows implementation for a fully parallel case
 → Number of processes equals ensemble size times number of processes used for a single model task!

• For a more flexible (and complicated) configuration see PDAF’s online guide
model_pdaf: General program structure

```fortran
program main_pdaf

  init_parallel_pdaf   - initialize parallelization
  initialize          - initialize model information
  init_pdaf           - initialize parameters for PDAF and read ensemble
  integrate           - time stepping loop
                      - compute analysis step
                        (called inside stepping loop)
  assimilate_pdaf

end program

Note:
In the example code, we use different files main.F90 and main_pdaf.F90 to allow for easy comparison.

PDAF tutorial – Analysis step in online mode with a parallel model
```
mod_assimilation.F90

Fortran module

• Declares the parameters used to configure PDAF
• Will be included (with ‘use’) in the user-written routines
• Additions to template necessary for observation handling
0d) Inserting subroutine calls
Where to insert subroutine calls?

init_parallel_pdaf

- at the start of the program, **but after the MPI_Init performed in the code of the parallel model**

init_pdaf

- after the initialization of the model i.e. directly before the time stepping loop

assimilate_pdaf

- Last operation in the time stepping loop i.e. just before the ‘END DO’

Note: One can add the routines one after the other: First insert `init_parallel_pdaf` and test the program, then add `init_pdaf`, etc.
init_parallel_pdaf.F90

• It is fully implemented template usable with small adaptions
• Required adaptions
 • Include MPI variables from module of the model: MPI_COMM_WORLD, COMM_model, mype_model, npes_model (the latter three variables might be named differently in a model)
 • init_parallel_pdaf defines a model communicator comm_model
 (actually it’s a set for communicators, one for each model task)
 • Set communicator of the parallel model to comm_model at the end if init_parallel_pdaf:
 “my_models_communicator” = comm_model
 (include my_models_communicator from module of model)
 • Set variables for number of processes in model and rank of a process (npes_model, mype_model) at end of routine
init_parallel_pdaf.F90 (2)

• Parallelization variables for PDAF are declared in Fortran module

 mod_parallel_pdaf

• Important variable:

 n_modeltasks

 • Defines number of concurrent model integrations.
 • Has to be equal to ensemble size
 • In the example: Read as ‘dim Ens’ from command line (using subroutine ‘parse’)

• Important: If the parallel model uses MPI_COMM_WORLD, this has to be replaced! (MPI_COMM_WORLD denotes always all processes in the program)
init_pdaf.F90

Routine sets parameters for PDAF, calls `PDAF_init` to initialize the data assimilation, and calls `PDAF_get_state` to prepare the ensemble integrations:

Template contains list of available parameters (declared in and used from `mod_assimilation`)

Independent of the filter algorithm:
- Include information on size of model fields from model
- Define dimension of decomposed state vector
 \[\text{dim_state_p} = \text{nx}_p \times \text{ny} \]

In call to `PDAF_init`, the name of the user-supplied routine for ensemble initialization routine is specified:

`init_ens_pdaf`
In call to PDAF_get_state, the names of 3 user-supplied routines are specified:

next_observation_pdaf
- Set number of time steps in forecast phase

distribute_state_pdaf
- Initialize model fields from state vector

prepoststep_ens_pdaf
- poststep routine (compute estimated errors, write state estimate, etc.)

Initially, one can just copy the template routines. One can adapt them later to the particular application.
assimilate_pdaf.F90

Routine just calls a filter-specific routine like

 PDAF_assimilate_estkf

We don’t insert PDAF_assimilate_estkf directly into the model code

 ➜ because, we need to declare all user-supplied routines as
 ‘EXTERNAL’. This could clutter the model code.

Filter-specific user routines are described next. Initially, one can just
copy the template routines.

Note: Template contains calls for PDAF_assimilate_estkf and
PDAF_assimilate_llestkf. Need to adapt for other filters
Differences online and offline

- If you’ve studied the tutorial for offline mode

Offline
- Separate programs for model and assimilation
- Needed to implement routine `initialize`
- Grid dimensions declared in `mod_assimilation`
- Ensemble information read from files
- `mod_assimilation` contains all field and assimilation variables

Online
- Extend model program for assimilation
- Operations in `initialize` given by model; no changes for assimilation!
- Grid dimensions defined in model code (`mod_model`)
- Ensemble information provided by model fields
- `mod_assimilation` only contains variables for assimilation
Optional routine: finalize_pdaf.F90

Call to finalize_pdaf can be inserted at the end of the model.

Routine contains two calls to PDAF_print info:

CALL PDAF_print_info(2)
 – display information on allocated memory inside PDAF

CALL PDAF_print_info(1)
 – display timing information
 (values 3 and 4 also possible for more detailed timers)

Note: finalize_pdaf only prints the information for mype_world==0

In addition there is

CALL PDAF_deallocate()

which deallocates internal arrays in PDAF
0e) Forecast phase
Files to be changed

Template contains all required files

- just need to be filled with functionality

init_pdaf.F90
init_ens.F90
next_observation_pdaf.F90
distribute_state_pdaf.F90
collect_state_pdaf.F90
init_dim_obs_pdaf.F90
obs_op_pdaf.F90
init_obs_pdaf.F90
prodrinva_pdaf.F90
prepoststep_ens_pdaf.F90

PDAF tutorial – Analysis step in online mode with a parallel model
init_pdaf.F90

Routine sets parameters for PDAF and calls PDAF_init to initialize the data assimilation:

Template contains list of available parameters (declared in and used from mod_assimilation)

For the example set:

1. dimEns = 9
2. rms_obs = sqrt(0.5)
3. filterType = 6 (for ESTKF)
4. delt_obs = 2 (assimilate after each 2nd time step)

In call to PDAF_init, the name of the ensemble initialization routine is specified:

init_ens_pdaf
A call-back routine called by PDAF_init:

- Implemented by the user
- Its name is specified in the call to PDAF_init
- It is called by PDAF through a defined interface:

```
SUBROUTINE init_ens_offline(filtertype, dim_p, dim_ens, state_p, Uinv, ens_p, flag)
```

Declarations in header of the routine shows “intent” (input, output):

```
REAL, INTENT(out) :: ens_p(dim_p, dim_ens)
```

Note:
All call-back routines have a defined interface and show the intent of the variables. Their header comment explains what is to be done in the routine.
init_ens_pdaf.F90 (2)

Initialize ensemble matrix ens_p for the start time of the assimilation

1. Include nx, ny, nx_p with use mod_model
2. Declare and allocate real :: field(ny, nx)
3. Loop over ensemble files (i=1,dim_ens)
 for each file:
 • read ensemble state into field
 • store local part of field in column i of ens_p
 (columns nx_p*mype_model+1 : nx_p*mype_model+nx_p)
4. Deallocate field

Note:
Columns of ens_p are state vectors.
Store following storage of field in memory (column-
The forecast phase

At this point the initialization of PDAF is complete:

- Initial Ensemble of model states is initialized
- Filter algorithm and its parameters are chosen

Next:

- Implement user-routines for forecast phase
- All are call-back routines:
 - User-written, but called by PDAF

Note:
Some variables end with _p.
It means that the variable is specific for a process
(its values are different for each process)
next_observation_pdaf.F90

Routine to

- Set number of time steps in next forecast phase
- Set flag to control exit from forecasts (doexit)

Most simple setting:

```fortran
include delt_obs from mod_assimilation
nsteps = delt_obs
doexit = 0
```

Note: The assimilation program stops when the maximum number of time steps of the model is reached, even if doexit=0
More sophisticated setting:

- Utilize `stepnow` (current time step) and `total_steps` (total number of time steps given by model).

```fortran
IF (stepnow + nsteps <= total_steps) THEN
    nsteps = delt_obs ! Forecast length
    doexit = 0 ! Continue assimilation
ELSE
    nsteps = 0 ! No more steps
    doexit = 1 ! Exit assimilation
END IF
```

Note: In the example `doexit=1` is used only inside PDAF and avoids some screen output.
distribute_state_pdaf.F90

Routine to

- Initialize model fields from a state vector
- Routine is provided with the state vector `vector_p`

For the example:

1. Access `nx_p`, `ny` and `field_p` with use `mod_model`

2. Initialize model field from state vector:

\[
\text{DO } j = 1, \text{ nx}_p \\
\quad \text{field}_p(1:ny, j) = \text{state}_p(1+(j-1)*ny : j*ny) \\
\text{END DO}
\]
prepoststep_ens_pdaf.F90

Post-step routine for the online mode:

Already there in the template:
1. Compute ensemble mean state state_p
2. Compute estimated variance vector variance
3. Compute estimated root mean square error rmserror_est

Possible extensions:
4. Write analysis state (ensemble mean, state_step*_ana.txt)
5. Write analysis ensemble into files
 (Analogous to reading in init_ens_pdaf)
6. Analogously one can write the forecast fields
Completion of forecast phase

At this point the implementation of the forecast phase is practically complete:

- Initial ensemble and PDAF’s parameters are set
- The ensemble forecast can be computed

One can now compile the program model_pdaf (make model_pdaf) to check whether it runs.

Note: It is recommended to compile PDAF with –DPDAF_NO_UPDATE at this point as the routine for the analysis step are not yet implemented.

Note: For now, prepoststep_ens_pdaf only lets you test the initial ensemble. Testing the forecast fields need implementation of routine collect_state_pdaf
1a) Global filter
Running the tutorial program

- cd to /tutorial/online_2D_serialmodel
- Set environment variable PDAF_ARCH or set it in Makefile (e.g. linux_gfortran_openmpi)
- Compile by running ‘make model_pdaf’ (next slide will discuss possible compile issues)
- Run the program with
 mpirun --np 18 ./model_pdaf --dim_ens 9

- Inputs are read in from /tutorial/inputs_online
- Outputs are written in /tutorial/online_2D_parallelmodel
- Plot result, e.g. with ‘octave’:
 | load state_step10_ana.txt |
 | pcolor(state_step10_ana) |
Requirements for compiling PDAF

PDAF requires libraries for BLAS and LAPACK

- Libraries to be linked are specified in the include file for make in /make.arch (file according to PDAF_ARCH)

- For $PDAF_ARCH=linux_gfortran_openmpi$ the specification is
 \[
 \text{LINK_LIBS} = -L/usr/lib -llapack -lblas -lm
 \]

- If the libraries are at another non-default location, one has to change the directory name (/usr/lib)

- Some systems or compilers have special libraries (e.g. MKL for ifort compiler, or ESSL on IBM/AIX)

PDAF needs to be compiled for double precision

- Needs to be set at compiler time in the include file for make:

- For gfortran: \(\text{OPT} = -O3 -fdefault-real-8 \)
Files in the tutorial implementation

/tutorial/inputs_online

- true_stepY.txt true state
- state_ini.txt initial estimate (ensemble mean)
- obs_stepY.txt observations
- ens_X.txt initial ensemble members

/tutorial/online_2D_parallelmodel (after running model_pdaf)

- state_stepY_ana.txt analysis state estimate
- ens_X_stepY_ana.txt analysis ensemble members

X=1,...,9: ensemble member index
Y=1,...,18: time step index

Note: Files *_for.txt contain forecast fields
Result of the global assimilation

For example, at step 10

- The analysis state (center) is closer to the true field than without assimilation (left)
- Truth and analysis are nearly identical (right)
The analysis step

Next: Implement user-routines for the analysis step

The analysis step needs several user-supplied routines for operations like

• write forecast model fields into state vector
• determine number of available observations
• observation operator acting on a state vector
• initialization of the vector of observations
collect_state_pdaf.F90

Routine to

- Fill state vector with forecasted model fields
- Routine is provided with the state vector vector_p

For the example:

1. Access nx, ny and field with use mod_model
2. Initialize state vector from model field:

```fortran
DO j = 1, nx_p
    state_p(1+(j-1)*ny : j*ny) = field_p(1:ny, j)
END DO
```

Note: The routine is independent of the filter!
Routine to

- read observation file
- Count number of observations for process-local part of state vector (direct output to PDAF: \texttt{dim_obs_p})

Optional, also

- Initialize array holding process-local available observations
- Initialize index array telling index of observation point in process-local state vector

The most complicated routine in the example! (but only about 123 lines)
init_dim_obs_pdaf.F90 (2)

Preparations and reading of observation file:
1. Include \(nx, \ ny, \ nx_p \) with use mod_model
2. declare and allocate real array \(\text{obs_field}(ny, \ nx) \)
3. Get offset of local part in global state vector
 \(\text{off}_p = \text{Sum over nx}_p \times ny \) up to \(i=\text{mype}_\text{filter} \)
4. read observation file for current time step:

Initialize string ‘stepstr’ for time step

OPEN (12, &
 file='inputs_online/obs'//stepstr//''.txt', &
 status='old')
DO i = 1, ny
 READ (12, *) \(\text{obs_field}(i, :) \)
END DO
CLOSE (12)
Count available process-local observations (\texttt{dim_obs_p}):

1. Declare \texttt{integer :: cnt0, cnt_p}

2. Now count

\begin{verbatim}
cnt0 = 0
cnt_p = 0
DO j = 1, nx
 DO i = 1, ny
 cnt0 = cnt0 + 1
 IF (cnt0 > off_p .AND. cnt0 <= off_p + nx_p*ny) THEN
 IF (obs_field(i,j) > -999.0) cnt_p = cnt_p + 1
 END IF; END DO; END DO
\end{verbatim}

\texttt{dim_obs_p} = \texttt{cnt_p}
Initialize observation vector (obs_p) and index array (obs_index_p):

1. Include obs_p and obs_index_p with use mod_assimilation

2. Allocate
 obs_p(dim_obs_p), obs_index_p(dim_obs_p)
 (If already allocated, deallocate first)

3. Now initialize ...

Note:
The arrays only contain information about valid observations; one could store observations already in files in this way.
Initialize obs and obs_index

\[
\text{cnt0} = \text{cnt}_p = \text{cnt0}_p = 0 \quad ! \text{Count grid points}
\]
\[
\text{DO j = 1, nx}
\]
\[
\text{DO i= 1, ny}
\]
\[
\text{cnt0} = \text{cnt0} + 1
\]
\[
\text{IF (cnt0}>\text{off}_p \quad \text{AND.} \quad \&
\text{cnt0}<\text{off}_p+\text{nx}_p*\text{ny}) \quad \text{THEN}
\]
\[
\text{cnt0}_p = \text{cnt0}_p + 1
\]
\[
\text{IF (obs_field(i,j) > -999.0) \quad \text{THEN}
\]
\[
\text{cnt}_p = \text{cnt}_p + 1
\]
\[
\text{obs_index}_p(\text{cnt}_p) = \text{cnt0}_p \quad ! \text{Index}
\]
\[
\text{obs}_p(\text{cnt}_p) = \text{obs_field(i, j)} \quad ! \text{observations}
\]
\[
\text{END IF; END IF}
\]
\[
\text{END} \quad \text{DO}
\]
\[
\text{END DO}
\]
Implementation of observation operator
acting on some state vector

Input: state vector \textit{state_p}
Output: observed state vector \textit{m_state_p}

1. Include \textit{obs_index_p} by use \texttt{mod_assimilation}
2. Select observed grid points from state vector:

\[
\text{DO } i = 1, \text{dim_obs_p} \\
\quad \textit{m_state_p}(i) = \textit{state_p}(\text{obs_index_p}(i)) \\
\text{END DO}
\]

Note:
\texttt{dim_obs_p} is an input argument of the routine
Fill PDAF’s observation vector

Output: vector of observations observation_p

1. Include obs_p with use mod_assimilation
2. Initialize observation_p:

 \[\text{observation}_p = \text{obs}_p \]

Note:
This is trivial, because of the preparations in init_dim_obs_pdaf!
(However, the operations needed to be separate, because PDAF allocates observations_p after the call to init_dim_obs_pdaf)
prodrinva_pdaf.F90

Compute the product of the inverse observation error covariance matrix with some other matrix

- Input: Matrix $A_p(dim_{obs}_p, \text{rank})$
- Output: Product matrix $C_p(dim_{obs}_p, \text{rank})$
 (rank is typically $dim_{ens}-1$)

1. Declare and initialize inverse observation error variance
 $$\text{inverse}_\text{obs} = 1.0 / \text{rms}_\text{obs}^2$$

2. Compute product:

   ```fortran
   DO j = 1, rank
       DO i = 1, dim_{obs}_p
           C_p(i, j) = inverse_{obs} * A_p(i, j)
       END DO
   END DO
   ```
The analysis step in online mode with the parallelized model is fully implemented now.

The implementation allows you now to use the global filter ESTKF (ETKF and SEIK are usable by adding a call to the corresponding routines PDAF_assimilate_X in assimilate_pdaf)

Not usable are EnKF and SEEK (The EnKF needs some other user files und SEEK a different ensemble initialization)
A complete analysis step

We now have a fully functional analysis step
- if no localization is required!

Possible extensions for a real application:
Adapt routines for
- Multiple model fields
 → Store full fields consecutively in state vector
- Third dimension
 → Extend state vector
- Different observation types
 → Store different types consecutively in observation vector
- Other file type (e.g. binary or NetCDF)
 → Adapt reading/writing routines
Differences between online and offline modes

For the analysis step in online mode:

- `collect_state_pdaf` - additional routine for online mode
- `init_dim_obs_pdaf` - read from file for current time step; include `nx`, `ny` from `mod_model` instead of `mod_assimilate`
- `obs_op_pdaf` - identical in online and offline modes
- `init_obs_pdaf` - identical in online and offline modes
- `prodrinva_pdaf` - identical in online and offline modes
1b) Local filter with parallelized model
Localization

Localization is usually required for high-dimensional systems

- Update small regions (S) (e.g. single grid points, single vertical columns)
- Consider only observations within cut-off distance (D)
- Weight observations according to distance from S
The FULL observation vector

- A single local analysis at S (single grid point) need observations from domain D
- A loop of local analyses over all S needs all observations
 - This defines the *full* observation vector
- Why distinguish *full* and *all* observations?
 → They can be different in case of parallelization!
- Example:
 - Split domain in left and right halves
 - Some of the analyses in left half need observations from the right side.
 - Depending on localization radius not all observations from the right side might be needed for the left side analyses
Running the tutorial program

- Compile as for the global filter
- Run the program with

 `mpirun -np 18 ./model_pdaf -dim_ens 9 OPTIONS`

- OPTIONS are always of type `KEYWORD VALUE`
- Possible OPTIONS are
 - `filtertype 7` (select LESTKF if not set in `init_pdaf`)
 - `local_range 5.0` (set localization radius, 0.0 by default, any positive value should work)
 - `locweight 2` (set weight function for localization, default=0 for constant weight of 1; possible are integer values 0 to 4; see `init_pdaf`)

Note: You can run the model e.g. using 18 MPI-processes even on most computers with only 2 processor cores. However, to see a speedup in computing time, you need more physical processors.
Result of the local assimilation

```
mpirun -np 9./model_pdaf -dim_ens 9 -filtertype 7
```

- Default: zero localization radius (local_range=0.0)
- Change only at observation locations
Result of the local assimilation (2)

... -filtertype 7 -local_range 10.0

- All local analysis domains are influenced (all see observations)
- Up to 16 observations in a single local analysis (average 9.6)

Note: The set up of the experiment favors the global filter because of the shape of the ensemble members
Result of the local assimilation (2)

... -filtertype 7 -local_range 10.0 -locweight 2

- Observation weighting by 5th-order polynomial
- Analysis field is smoother than before (because of weighting)
Result of the local assimilation (3)

... -filtetype 7 -local_range 40.0

- Large radius: All local analysis domains see all observations
- Result identical to global filter
Local filter LESTKF

- Localized filters are a variant of the global filters
- User written files for global filter can be widely re-used
- Additional user-written files to handle local part

- No changes to:
 - initialize.F90
 - init_ens.F90
 - prepoststep_ens_pdaf.F90

- Change in init_pdaf.F90:
 - Set filtertype = 7
 - (You can also set it later on command line)
Local filter LESTKF (2)

Adapt files from global analysis

\[
\begin{align*}
\text{init_dim_obs_pdaF.F90} & \rightarrow \text{init_dim_obs_f_pdaF.F90} \\
\text{obs_op_pdaF.F90} & \rightarrow \text{obs_op_f_pdaF.F90} \\
\text{init_obs_pdaF.F90} & \rightarrow \text{init_obs_f_pdaF.F90} \\
\text{prodrinva_pdaF.F90} & \rightarrow \text{prodrinva_l_pdaF} \\
\end{align*}
\]

Naming scheme:

f “full”: operate on all required observations
 (without parallelization these are all observations)

l “local”: operation in local analysis domain or corresponding
 local observation domain
Local filter LESTKF (3)

Additional files for local analysis step

```
init_n_domains_pdaf.F90
init_dim_l_pdaf.F90
init_dim_obs_l_pdaf.F90
g2l_state_pdaf.F90
g2l_obs_pdaf.F90
init_obs_l_pdaf.F90
l2g_state_pdaf.F90
```

Discuss now the files in the order they are called
init_n_domains_pdaf.F90

Routine to set the number of local analysis domains

Output: n_domains_p
For the example: number of process-local grid points (nx_p * ny)

To do:
1. Include nx_p, ny with use mod_model
2. Set

 \[n_domains_p = nx_p \times ny \]
Operations in case of parallelization:

- Read observation file
- Count number of observations for process-local part of state vector (dim_obs_p)
- Initialize arrays holding process-local available observations (obs_p) and their coordinates (coords_obs_p)
- Initialize index array (obs_index_p) telling index of a process-local observation in process-local state vector
- Initialize full number of observations (dim_obs_f), vector of observations (obs_f), and coordinates (coords_obs_f)

“FULL” observation vector:
All observations required for all local analyses in process-local part of state vector (Here: Full=All observations for simplicity)

Adapt init_dim_obs_f_pdaf from global filter ...
init_dim_obs_f_pdaf.F90 (2)

Initialize coordinates of process-local observations

For the local filter:

1. Copy functionality from init_dim_obs_pdaf.F90
 (In the subroutine definition take care that dim_obs_F is used
 instead of dim_obs_p)

2. Include dim_obs_p with use mod_assimilation

3. Initialization of observation coordinates
 a) Add allocatable REAL arrays coords_obs_p
 and obs_p to the routine (don’t include obs_p from module)
 b) In the loop where obs_p is set add
 coords_obs_p(1, cnt_p) = REAL (j)
 coords_obs_p(2, cnt_p) = REAL (i)
Initialize full quantities (dim_obs_f, obs_f, coords_obs_f)

1. Include allocatable arrays coords_obs_f and obs_f with mod_assimilation
2. Obtain dim_obs_f by calling PDAF_gather_dim_obs_f
3. Allocate obs_f and coords_obs_f (deallocate first if already allocated)
4. Obtain obs_f by calling PDAF_gather_obs_f
5. Obtain coords_obs_f by calling PDAF_gather_obs_f
6. Add DEALLOCATE for obs_p and coords_obs_p

Note: It is mandatory to call PDAF_gather_dim_obs_f once before using the two other functions because it stores dimension information.

Note: The three PDAF functions have been added with PDAF Version 1.13 to avoid that the user implementation needs calls to MPI functions.

Note: coords_obs_f has to be a REAL array
obs_op_f_pdaf.F90

Implementation of observation operator for full observation domain

Difficulty:
- The state vector state_p is local to each process
- Full observed vector goes beyond process boundary

Implement two steps:
1. Initialize process-local observed state
2. Gather full observed state vector using MPI
obs_op_f_pdaf.F90 (2)

1. Initialize process-local observed state \(m_{\text{state}_p} \)
 a) Include \(\text{dim}_\text{obs}_p \) and \(\text{obs}_\text{index}_p \)
 with use \text{mod}_\text{assimilation}
 b) Declare real allocatable array \(m_{\text{state}_p(:)} \)
 c) Allocate
 \(m_{\text{state}_p(\text{dim}_\text{obs}_p)} \)
 d) Fill the array

\[
\text{DO } i = 1, \text{dim}_\text{obs}_p \\
\quad m_{\text{state}_p}(i) = \text{state}_p(\text{obs}_\text{index}_p(i)) \\
\text{END DO}
\]
2. Get full observed state vector
 a) Add variable `INTEGER :: status`
 b) Add call to `PDAF_gather_obs_f`:

   ```fortran
   CALL PDAF_gather_obs_f(m_state_p, m_state_f, status)
   ```
 c) Deallocate `m_state_p`

Note: It is mandatory to call `PDAF_gather_dim_obs_f` once before using the two other functions because it stores dimension information. Usually this was already done in `init_dim_obs_f_pdaf`
init_dim_l_pdaf.F90

Set the size of the local analysis domain

Each single grid point is a local analysis domain in the example

1. Set \texttt{dim_l} = 1
init_dim_obs_l_pdaf.F90

Set the size of the observation vector for the local analysis domain
As for the global filter, this is the longest routine (~115 lines)
Only direct output: \texttt{dim_obs_l}

Operations:
1. Determine coordinates of local analysis domain
2. Determine coordinate range for observations
3. Count observations within prescribed localization radius
4. Set index array for local observations and array of distances of local observations (optional)

\textbf{Note:} The index array in step 4 is re-used for an efficient implementation of \texttt{g2l_obs_pdaf}. The local distance array initialized in step 4 is re-used in \texttt{prodrinva_l_pdaf} avoiding to recompute distances.
1. Determine coordinates of local analysis domain

1. Compute offset:

 \[\text{off}_p = \text{Sum over } nx_p \times ny \text{ up to } i=mype_filter \]

2. Declare real :: coords_l(2)

3. Include nx, ny, nx_p with use mod_model

4. Compute coords_l from nx, ny:

 coords_l(1) = real(ceiling(real(domain_p + off_p)/real(ny)))
 coords_l(2) = real(domain_p + off_p) - (coords_l(1)-1)*ny

Note: With parallelization the domain numbering begins with 1 for each process. For the coordinates we also need to count the domains from processes with lower process rank using `off_p`
2. Determine coordinate range for local observations
 1. Declare real :: limits_x(2), limits_y(2)
 2. Include local_range with use mod_assimilation
 3. Set lower and upper limits. E.g. for x-direction

 \[
 \begin{align*}
 \text{limits}_x(1) &= \text{coords}_l(1) - \text{local}_range \\
 \text{if} \ (\text{limits}_x(1) < 1.0) \ &= \text{limits}_x(1) = 1.0 \\
 \text{limits}_x(2) &= \text{coords}_l(1) + \text{local}_range \\
 \text{if} \ (\text{limits}_x(2) > \text{real}(\text{nx})) \ &= \text{limits}_x(2) = \text{real}(\text{nx})
 \end{align*}
 \]

 (analogous for y-direction)

Note: Using limits_x, limits_y is not strictly required, but it makes the search for local observations more efficient.

If the localization is only based on grid point indices, the coordinates could be handled as integer values.
3. Count local observations (within distance local_range)
 \[\text{dim_obs_l} = 0\]
 \[
 \text{DO } i = 1, \text{dim_obs_f} \\
 \quad \text{IF } ("\text{coords_obs_f}(::,i) \text{ within coordinate limits"}) \text{ THEN} \\
 \quad \quad \text{Compute distance between coords_obs and coords_l} \\
 \quad \quad \text{IF } (\text{distance} \leq \text{local_range}) \& \\
 \quad \quad \quad \text{dim_obs_l} = \text{dim_obs_l} + 1 \\
 \quad \text{END IF} \\
 \text{END DO} \]

\textbf{Note:}
For efficiency, we only compute distance for observations within coordinate limits limits_x, limits_y. Valid local observations reside within circle of radius local_range.
4. Set index array and coordinate array for local observations

 - Index of a local observation in the full observation vector

1. Include `obs_index_l` and `distance_l` with use `mod_assimilation`

2. Allocate `obs_index_l(dim_obs_l)`

3. Fill index array:

   ```plaintext
   cnt = 0
   DO i = 1, dim_obs_f
       IF ("coords_obs(:,i) within coordinate limits") THEN
           Compute distance between coords_obs and coords_l
           IF (distance <= local_range) THEN
               cnt = cnt + 1
               obs_index_l(cnt) = i
               distance_l(cnt) = distance
           END ...
   END ...
   ```
g2l_state_pdaf.F90

Initialize state vector for local analysis domain from global state vector

- Here the local state is just one element of the global state vector

Input: state_p(1:dim_p)

Output: state_l(1:dim_l)

1. Set

 \texttt{state_l} = state_p(domain_p)

Note:

\texttt{dim_l} = 1 in the example
Initialize local observed state vector from full observed vector

- We use the index array `obs_index_l` for this.

Input: `mstate_f(1:dim_obs_f)`
Output: `mstate_l(1:dim_obs_l)`

1. Include `obs_index_l` with `use mod_assimilation`.
2. Initialize `mstate_l`:

   ```fortran
   DO i = 1, dim_obs_l
       mstate_l(i) = mstate_f(obs_index_l(i))
   END DO
   ```
Initialize local vector of observations.

- Again, we use the index array `obs_index_l` for this.

Output: `observation_l(1:dim_obs_l)`

1. Include `obs` and `obs_index_l` with `use mod_assimilation`
2. Initialize local observation vector

```fortran
DO i = 1, dim_obs_l
    observation_l(i) = obs_f(obs_index_l(i))
END DO
```
prodrinva_l_pdaf.F90

Compute the product of the inverse observation error covariance matrix with some other matrix
+ apply observation localization (weighting)

- The weighting and the product are fully implemented for a diagonal observation error covariance matrix with constant variance

When we re-use the array distance_l initialized in init_dim_obs_l_pdaf, no changes are required here.
l2g_state_pdaf.F90

Initialize global state vector from state vector for local analysis domain

➢ Here the local state is just one element of the global state vector

Input: \(\text{state}_l(1: \text{dim}_l) \)
Output: \(\text{state}_p(1: \text{dim}_p) \)

1. Implement inverse operation to that in g2l_state_pdaf.F90

\[
\text{state}_p(\text{domain}_p) = \text{state}_l
\]

Note:
The implementation utilizes that \(\text{dim}_l = 1 \)
Now, the analysis step for local ESKTF in offline mode is fully implemented.

The implementation allows you now to use the local filter LESTKF (LETKF, LSEIK can be used after adding calls to PDAF_assimilate_X)

Not usable are EnKF and SEEK (PDAF does not have localization for these filters)

For testing one can vary localization parameters:

- `local_range` – the localization radius
- `locweight` – the weighting method

Default are `local_range=0.0` (observation at single grid point) and `locweight=1` (uniform weight)
2) Hints for adaptations for real models
Implementations for real models

- Tutorial demonstrates implementation for simple model
- You can base your own implementation on the tutorial implementation or the templates provided with PDAF
- Need to adapt most routines, e.g.
 - Specify model-specific state vector and its dimension
 - Adapt `distribute_state` and `collect_state`
 - Adapt routines handling observations
- Further required changes
 - Adapt file output (usually only want to write ensemble mean state in `prepoststep_pdaf`; sometimes possible to use output routines from model)
Multiple fields in state vector

- Tutorial uses a single 2-dimensional field
- All fields that should be updated by the assimilation have to be part of the state vector
- For more fields:
 - concatenate them in the state vector
 - adapt state dimension in `init_pdaf`
 - adapt `init_ens_pdaf`, `collect_state_pdaf`, `distribute_state_pdaf`, `prepoststep_pdaf`
 - For local filters: Adapt full (`_f_`) and local (`_l_`) routines and `g2l_state_pdaf`, `l2g_state_pdaf`, `g2l_obs_pdaf`
- **Note**
 - It can be useful to define a vector storing the offset (position) of each field in the state vector
Multiple observed fields

- In tutorial: observed one field at some grid points
- For several observed fields adapt observation routines:
 - concatenate observed fields in observation vector
 - adapt all observation-handling routines

Note

- The observation errors can be set differently for each observed field (e.g. using an array `rms_obs`)
- The localization radius can be set specific for each observed field (observation search in `init_dim_obs_l_pdaf` would use different `local_range` for different fields)
- One can use spatially varying observation errors using an array `rms_obs` in `prodrinva(_l)_pdaf`
The End!

Tutorial described example implementations

- Online mode of PDAF
- Simple 2D model with parallelization
- Parallelization over ensemble members at the model itself
- Square root filter ESTKF
 - global and with localization
- Extension to more realistic cases possible with limited coding
- Applicable also for large-scale problems

For full documentation of PDAF and the user-implemented routines see http://pdaf.awi.de