
PDAF Tutorial

Implementation of the analysis step

in offline mode
using PDAF’s full interface

http://pdaf.awi.de

V1.11 – 2024-09-07

PDAF tutorial – Analysis step in offline mode

Implementation Tutorial for PDAF offline

PDAF tutorial – Analysis step in offline mode

We demonstrate the implementation

of an offline analysis step with PDAF

using the template routines provided by PDAF

The example code is part of the PDAF source code package
downloadable at http://pdaf.awi.de

(This tutorial is compatible with PDAF V3.0 and later)
Please note:

The implementation variant described here is rather for reference
with older implementations. We recommend to base any new

implementation on using PDAF-OMI that was introduced in PDAF
V1.16. Please see the PDAF-OMI tutorial.

http://pdaf.awi.de/

PDAF tutorial – Analysis step in offline mode

Implementation Tutorial for PDAF offline

PDAF tutorial – Analysis step in offline mode

This is just an example!

For the complete documentation of PDAF’s interface

see the documentation

at http://pdaf.awi.de

PDAF tutorial – Analysis step in offline mode

Overview

PDAF tutorial – Analysis step in offline mode

Focus on Error Subspace Transform Kalman Filter
(ESTKF, Nerger et al., Mon. Wea. Rev. 2012)

4 Parts

1. Without parallelization 2. With MPI-parallelization
a) Global filter a) Global filter
b) Localized filter b) Localized filter

(and OpenMP-parallelization)

We recommend to first implement the global filter. The localized
filter re-uses routines of the global filter.

We assume that 1a is implemented before 1b and 1a is
implemented before 2a (1b before 2b).

PDAF tutorial – Analysis step in offline mode

Contents

PDAF tutorial – Analysis step in offline mode

0a) Files for the tutorial 6
0b) The model 10
0c) State vector and observation vector 12
0d) PDAF offline mode 15

1) Filters without parallelization 19
1a) Global filter 20
1b) Local filter 43

2) Using parallelization 69
2a) Use local filter with OpenMP-parallelization 70
2b) Parallelized global filter 78
2c) Parallelized local filter 95

3) Hints for adaptions for real models 109

PDAF tutorial – Analysis step in offline mode

0a) Files for the Tutorial

PDAF tutorial – Analysis step in offline mode

Tutorial implementation

PDAF tutorial – Analysis step in offline mode

Files are in the PDAF package

Directories:
/tutorial/classical/offline_2D_serial (OpenMP-parallelization)

/tutorial/classical/offline_2D_parallel (MPI parallelization)

• Fully working implementations of user codes

• PDAF core files are in /src
Makefile refers to it and compiles the PDAF library

• Only need to specify the compile settings (compiler, etc.) by
environment variable PDAF_ARCH. Then compile with ‘make’.

PDAF tutorial – Analysis step in offline mode

Templates for offline mode

PDAF tutorial – Analysis step in offline mode

Directory: /templates/offline

• Contains all required files

• Contains also
command line parser, memory counting, timers
(convenient but not required)

To generate your own implementation:

1. Copy directory to a new name

2. Complete routines for your model

3. Set base directory (BASEDIR) in Makefile

4. Set $PDAF_ARCH

5. Compile

PDAF tutorial – Analysis step in offline mode

PDAF library

PDAF tutorial – Analysis step in offline mode

Directory: /src

• The PDAF library is not part of the template
• PDAF is compiled separately as a library

and linked when the assimilation program is compiled
• Makefile includes a compile step for the PDAF library
• One can also cd to /src and run ‘make’ there

(requires setting of PDAF_ARCH)

$PDAF_ARCH

• Environment variable to specify the compile specifications
• Definition files in /make.arch
• Define by, e.g.

setenv PDAF_ARCH linux_gfortran (tcsh/csh)
export PDAF_ARCH=linux_gfortran (bash)

PDAF tutorial – Analysis step in offline mode

0b) The Model

PDAF tutorial – Analysis step in offline mode

2D „Model“

PDAF tutorial – Analysis step in offline mode

• See the separate tutorial
slides about the model

• Simple 2-dimensional grid
domain

• 36 x 18 grid points (longitude
x latitude)

• True state: sine wave in
diagonal direction

• No dynamics for offline mode

• Stored in text file (18 rows) –
true.txt

5 10 15 20 25 30 35

5

10

15

True field, initial time

-1

-0.5

0

0.5

1

PDAF tutorial – Analysis step in offline mode

0c) state vector and observation vector

PDAF tutorial – Analysis step in offline mode

State vector – some terminology used later

• PDAF performs computations on state vectors

• State vector
• Stores model fields in a single vector
• Tutorial shows this for one 2-dimensional field
• Multiple fields are just concatenated into the vector
• All fields that should be modified by the assimilation have to be

in the state vector

• State dimension
• Is the length of the state vector

(the sum of the sizes of the model fields in the vector)

• Ensemble array
• Rank-2 array which stores state vectors in its columns

PDAF tutorial – Analysis step in offline mode

Observation vector

• Observation vector
• Stores all observations in a single vector
• Tutorial shows this for one 2-dimensional field
• Multiple observed fields are just concatenated into the vector

• Observation dimension
• Is the length of the observation vector

(sum of the observations over all observed fields in the vector)

• Observation operator
• Operation that computes the observed part of a state vector
• Tutorial only selects observed grid points
• The operation can involve interpolation or integration

depending on type of observation

PDAF tutorial – Analysis step in offline mode

0d) PDAF offline mode

PDAF tutorial – Analysis step in offline mode

Offline mode

PDAF tutorial – Analysis step in offline mode

• Two separate programs

• “Model” – performs ensemble integrations

• “PDAF_offline” – perform analysis step

• Couple both programs through files

1. “PDAF_offline” reads ensemble forecast files

2. Performs analysis step

3. Writes analysis ensemble files (restart files for “Model”)

4. “Model” reads restart files and performs ensemble
integration

PDAF tutorial – Analysis step in offline mode

Programs in offline mode

PDAF tutorial – Analysis step in offline mode

Model

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Do i=1, nsteps

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

• Run for each ensemble member
• Write restart files

• Read restart files (ensemble)
• Compute analysis step
• Write new restart files

Assimilation
program

Aaaaaaaa

Aaaaaaaa

aaaaaaaa
a

Start

Stop

init_parallel_pdaf

init_pdaf

assimilation_pdaf

PDAF tutorial – Analysis step in offline mode

PDAF_offline: General program structure

PDAF tutorial – Analysis step in offline mode

program main_offline

init_parallel_pdaf
initialize communicators
(not relevant without parallelization)

initialize
initialize model information

init_pdaf
initialize parameters for PDAF
and read ensemble

assimilation_pdaf
perform analysis
(by call to PDAF_put_state_X)

end program

PDAF tutorial – Analysis step in offline mode

1 Filters without parallelization

PDAF tutorial – Analysis step in offline mode

1a) Global filter without parallelization

PDAF tutorial – Analysis step in offline mode

Running the tutorial program

PDAF tutorial – Analysis step in offline mode

• Do cd /tutorial/classical/offline_2D_serial

• Set environment variable PDAF_ARCH or specify it when running
make (e.g. linux_gfortran)

• Compile by running ‘make’ (or ‘make PDAF_ARCH=…’)
(next slide will discuss possible compile issues)

• Run the program with ./PDAF_offline

• Inputs are read in from /tutorial/inputs_offline

• Outputs are written in
/tutorial/classical/offline_2D_serial

• Plot result, e.g. with Python:

python ../plotting/plot_file.py state_ana.txt

PDAF tutorial – Analysis step in offline mode

Requirements for compiling PDAF

PDAF tutorial – Analysis step in offline mode

PDAF requires libraries for BLAS and LAPACK

• Libraries to be linked are specified in the include file for make
in /make.arch (file according to PDAF_ARCH)

• For $PDAF_ARCH=linux_gfortran the specification is

LINK_LIBS =-L/usr/lib -llapack -lblas -lm

• If the libraries are at another non-default location, one has to
change the directory name (/usr/lib)

• Some systems or compilers have special libraries
(e.g. MKL for ifort compiler, or ESSL on IBM/AIX)

PDAF needs to be compiled for double precision

• Needs to be set at compiler time in the include file for make:

• For gfortran: OPT = -O3 -fdefault-real-8

PDAF tutorial – Analysis step in offline mode

Files in the tutorial implementation

PDAF tutorial – Analysis step in offline mode

/tutorial/inputs_offline

• true.txt true state

• state_ini.txt initial estimate (ensemble mean)

• obs.txt observations

• ens_X.txt (X=1,…, 9) ensemble members

/tutorial/classical/offline_2D_serial
(after running PDAF_offline)

• state_ana.txt analysis state estimate

• ens_X_ana.txt (X=1,…,9) analysis ensemble members

PDAF tutorial – Analysis step in offline mode

Result of the global assimilation

PDAF tutorial – Analysis step in offline mode

• The analysis state is closer to the true field than the initial estimate

• Truth and analysis are not identical
(the ensemble does not allow it)

PDAF tutorial – Analysis step in offline mode

Files to be changed

PDAF tutorial – Analysis step in offline mode

Template contains all required files

 just need to be filled with functionality

mod_assimilation.F90

initialize.F90

init_pdaf_offline.F90

init_ens_offline.F90

init_dim_obs_pdaf.F90

obs_op_pdaf.F90

init_obs_pdaf.F90

prodrinva_pdaf.F90

prepoststep_ens_offline.F90

Fortran module

initialization

analysis step

post step

PDAF tutorial – Analysis step in offline mode

mod_assimilation.F90

PDAF tutorial – Analysis step in offline mode

Fortran module

• Declares the parameters used to configure PDAF

• Add model-specific variables here
(see next slides)

• Will be included (with ‘use’) in the user-written routines

PDAF tutorial – Analysis step in offline mode

initialize.F90

PDAF tutorial – Analysis step in offline mode

Routine initializes the model information

1. Define 2D mesh in mod_assimilation.F90

integer :: nx, ny

2. In initialize.F90 include nx, ny, and dim_state_p
with use mod_assimilation

3. Define mesh size in initialize.F90

nx = 36

ny = 18

4. Define state dimension in initialize.F90

dim_state_p = nx * ny

Note: Some variables end with _p.
It means that the variable is specific for a process.
(Not relevant until we do parallelization)

PDAF tutorial – Analysis step in offline mode

init_pdaf_offline.F90

PDAF tutorial – Analysis step in offline mode

Routine sets parameters for PDAF, calls PDAF_init to initialize the
data assimilation, and PDAF_set_offline_mode to activate the
offline mode of PDAF:

Template contains list of available parameters
(declared in and used from mod_assimilation)

For the example set :

1. dim_ens = 9

2. rms_obs = sqrt(0.5)

3. filtertype = 6 (for ESTKF)

In call to PDAF_init, the name of the ensemble initialization routine
is specified:

init_ens_offline

PDAF tutorial – Analysis step in offline mode

init_ens_offline.F90

PDAF tutorial – Analysis step in offline mode

A call-back routine called by PDAF_init:

• Implemented by the user
• Its name is specified in the call to PDAF_init
• It is called by PDAF through a defined interface:

SUBROUTINE init_ens_offline(filtertype, dim_p,
dim_ens, state_p, Uinv, ens_p, flag)

Declarations in header of the routine shows “intent” (input, output):

REAL, INTENT(out) :: ens_p(dim_p, dim_ens)

Note:
All call-back routines have a defined interface and show the intent of
the variables. Their header comment explains what is to be done in
the routine.

PDAF tutorial – Analysis step in offline mode

init_ens_offline.F90 (2)

PDAF tutorial – Analysis step in offline mode

Initialize ensemble matrix ens_p

1. Include nx, ny with use mod_assimilation

2. Declare and allocate real :: field(ny, nx)

3. Loop over ensemble files (i=1,dim_ens)

for each file:

• read ensemble state into field

• store contents of field in column i of ens_p

Note:
Columns of ens_p are state vectors.
Store following storage of field in memory (column-wise in Fortran)

PDAF tutorial – Analysis step in offline mode

The analysis step

PDAF tutorial – Analysis step in offline mode

At this point the initialization of PDAF is complete:
• Forecast ensemble is initialized
• Filter algorithm and its parameters are chosen

Next:

• Implement user-routines for analysis step

• All are call-back routines:

 User-written, but called by PDAF

Note:
Some variables end with _p.
It means that the variable is specific for a process.
(Not relevant until we do parallelization)

PDAF tutorial – Analysis step in offline mode

init_dim_obs_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Routine to

• read observation file

• count number of available observations
(direct output to PDAF: dim_obs_p)

Optional, also

• initialize array holding available observations

• initialize index array telling index of observation point
in full state vector

The most complicated routine in the example!
(but less than 100 lines)

PDAF tutorial – Analysis step in offline mode

init_dim_obs_pdaf.F90 (2)

PDAF tutorial – Analysis step in offline mode

Preparations and reading of observation file:

1. Include nx, ny with use mod_assimilation

2. declare and allocate real array obs_field(ny, nx)

3. read observation file:

OPEN (12, file='inputs_offline/obs.txt’, &
status='old')

DO i = 1, ny

READ (12, *) obs_field(i, :)

END DO

CLOSE (12)

PDAF tutorial – Analysis step in offline mode

init_dim_obs_pdaf.F90 (3)

PDAF tutorial – Analysis step in offline mode

Count available observations (dim_obs_p):

1. Declare integer :: cnt, cnt0

2. Now count

cnt = 0

DO j = 1, nx

DO i= 1, ny

IF (obs_field(i,j) > -999.0) cnt = cnt + 1

END DO

END DO

dim_obs_p = cnt

PDAF tutorial – Analysis step in offline mode

init_dim_obs_pdaf.F90 (4)

PDAF tutorial – Analysis step in offline mode

Initialize observation vector (obs)
and index array (obs_index):

1. In mod_assimilation it is declared
real, allocatable :: obs_p(:), obs_index_p(:)

Include these variable with use mod_assimilation

2. Allocate
obs_p(dim_obs_p), obs_index_p(dim_obs_p)
(If already allocated, deallocate first)

3. Now initialize …

Note:
The arrays only contain information about valid observations;
one could store observations already in files in this way.

PDAF tutorial – Analysis step in offline mode

init_dim_obs_pdaf.F90 (5)

PDAF tutorial – Analysis step in offline mode

3. Now initialize

cnt0 = 0 ! Count grid points
cnt = 0 ! Count observations
DO j = 1, nx

DO i= 1, ny
cnt0 = cnt0 + 1
IF (obs_field(i,j) > -999.0) THEN

cnt = cnt + 1
obs_index_p(cnt) = cnt0 ! Index
obs_p(cnt) = obs_field(i, j) ! observations

END IF
END DO

END DO

PDAF tutorial – Analysis step in offline mode

obs_op_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Implementation of observation operator
acting one some state vector

Input: state vector state_p

Output: observed state vector m_state_p

1. Include obs_index_p by use mod_assimilation

2. Select observed grid points from state vector:

DO i = 1, dim_obs_p

m_state_p(i) = state_p(obs_index_p(i))

END DO

Note:
dim_obs_p is an input argument of the routine

PDAF tutorial – Analysis step in offline mode

init_obs_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Fill PDAF’s observation vector

Output: vector of observations observation_p

1. Include obs by use mod_assimilation

2. Initialize observation_p:

observation_p = obs_p

Note:
This is trivial, because of the preparations in init_dim_obs_pdaf!
(However, the operations needed to be separate, because PDAF
allocates observations_p after the call to init_dim_obs_pdaf)

PDAF tutorial – Analysis step in offline mode

prodrinva_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Compute the product of the inverse observation error covariance
matrix with some other matrix

• Input: Matrix A_p(dim_obs_p, rank)
• Output: Product matrix C_p(dim_obs_p, rank)

(rank is typically dim_ens-1)

1. Declare and initialize inverse observation error variance
ivariance_obs = 1.0 / rms_obs**2

2. Compute product:

DO j = 1, rank
DO i = 1, dim_obs_p

C_p(i, j) = ivariance_obs * A_p(i, j)
END DO

END DO

PDAF tutorial – Analysis step in offline mode

prepoststep_ens_offline.F90

PDAF tutorial – Analysis step in offline mode

Post-step routine for the offline mode:

Already there in the template:
1. Compute ensemble mean state state_p
2. Compute estimated variance vector variance
3. Compute estimated root mean square error rmserror_est

Required extension:

4. Write analysis ensemble into files used for model restart
(Analogous to reading in init_ens_pdaf_offline)

Possible (useful) extension:

5. Write analysis state (ensemble mean, state_ana.txt)

PDAF tutorial – Analysis step in offline mode

Done!

PDAF tutorial – Analysis step in offline mode

The analysis step in offline mode is fully implemented now

The implementation allows you now to use the global filters
ESTKF, ETKF, and SEIK

Not usable are EnKF and SEEK (The EnKF needs some other
user files und SEEK a different ensemble initialization)

PDAF tutorial – Analysis step in offline mode

A complete analysis step

PDAF tutorial – Analysis step in offline mode

We now have a fully functional analysis step
- if no localization is required!

Possible extensions for a real application:

Adapt routines for

 Multiple model fields
➜ Store full fields consecutively in state vector

 Third dimension
➜ Extend state vector

 Different observation types
➜ Store different types consecutively in observation vector

 Other file type (e.g. binary or NetCDF)
➜ Adapt reading/writing routines

PDAF tutorial – Analysis step in offline mode

1b) Local filter without parallelization

PDAF tutorial – Analysis step in offline mode

Localization

PDAF tutorial – Analysis step in offline mode

Localization is usually required for high-dimensional systems

• Update small regions (S)
(e.g. single grid points, single vertical columns)

• Consider only observations within cut-off distance (D)

• Weight observations according to distance from S

PDAF tutorial – Analysis step in offline mode

The FULL observation vector

PDAF tutorial – Analysis step in offline mode

• A single local analysis at S (single grid point) need observations
from domain D

• A loop of local analyses over all S needs all observations

• This defines the full observation vector

• Why distinguish full and all observations?

➜ They can be different in case of parallelization!

• Example:

 Split domain in left and right halves

 Some of the analyses in left half
need observations from the right side.

 Depending on localization radius not all observations from
the right side might be needed for the left side analyses

PDAF tutorial – Analysis step in offline mode

Running the tutorial program

PDAF tutorial – Analysis step in offline mode

• Compile as for the global filter

• Run the program with ./PDAF_offline OPTIONS

• OPTIONS are always of type –KEYWORD VALUE

• Possible OPTIONS are

• -filtertype 7 (select LESTKF if not set in init_pdaf_offline)

• -cradius 5.0 (set localization radius, 0.0 by default, any
positive value should work)

• -locweight 2 (set weight function for localization, default=0
for constant weight of 1; possible are integer
values 0 to 4; see init_pdaf_offline)

PDAF tutorial – Analysis step in offline mode

Result of the local assimilation

PDAF tutorial – Analysis step in offline mode

./PDAF_offline -filtertype 7

• Default: zero localization radius (cradius=0.0)

• Change only at observation locations

PDAF tutorial – Analysis step in offline mode

Result of the local assimilation (2)

PDAF tutorial – Analysis step in offline mode

./PDAF_offline -filtertype 7 -cradius 10.0

• All local analysis domains are influenced (all see observations)

• Up to 16 observations in a single local analysis (average 9.6)

Note: The set up of the experiment favors the global filter
because of the shape of the ensemble members

PDAF tutorial – Analysis step in offline mode

Result of the local assimilation (2)

PDAF tutorial – Analysis step in offline mode

./PDAF_offline -filtertype 7 -cradius 10.0 –locweight 2

• Observation weighting by 5th-order polynomial

• Analysis field is smoother than before (because of weighting)

PDAF tutorial – Analysis step in offline mode

Result of the local assimilation (3)

PDAF tutorial – Analysis step in offline mode

./PDAF_offline -filtertype 7 -cradius 40.0

• Large radius: All local analysis domains see all observations

• Result identical to global filter

PDAF tutorial – Analysis step in offline mode

Local filter LESTKF

PDAF tutorial – Analysis step in offline mode

• Localized filters are a variant of the global filters

• User written files for global filter can be widely re-used

• Additional user-written files to handle local part

• No changes to:

initialize.F90

init_ens_offline.F90

prepoststep_ens_offline.F90

• Change in init_pdaf_offline.F90:

Set filtertype = 7

(You can also set it later on command line)

PDAF tutorial – Analysis step in offline mode

Local filter LESTKF (2)

PDAF tutorial – Analysis step in offline mode

Adapt files from global analysis

init_dim_obs_pdaf.F90 ➜ init_dim_obs_f_pdaf.F90

obs_op_pdaf.F90 ➜ obs_op_f_pdaf.F90

init_obs_pdaf.F90 ➜ init_obs_f_pdaf.F90

prodrinva_pdaf.F90 ➜ prodrinva_l_pdaf

Naming scheme:

f “full”: operate on all required observations
(without parallelization these are all observations)

l “local”: operation in local analysis domain or corresponding
local observation domain

PDAF tutorial – Analysis step in offline mode

Local filter LESTKF (3)

Additional files for local analysis step

init_n_domains_pdaf.F90

init_dim_l_pdaf.F90

g2l_state_pdaf.F90

l2g_state_pdaf.F90

init_dim_obs_l_pdaf.F90

g2l_obs_pdaf.F90

init_obs_l_pdaf.F90

Discuss now the files in the order they are called

localize
state vector

localize
observations

PDAF tutorial – Analysis step in offline mode

init_n_domains_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Routine to set the number of local analysis domains

Output: n_domains_p
For the example: number of grid points (nx * ny)

To do:
1. Include nx, ny with use mod_assimilation

2. Set
n_domains_p = nx * ny

PDAF tutorial – Analysis step in offline mode

init_dim_obs_f_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Initialize dimension of full observation vector

For the local filter:

1. Copy functionality from init_dim_obs_pdaf.F90

2. Rename dim_obs_p to dim_obs_f and obs_p to obs_f

3. Add storage of observation coordinates

a) Include coords_obs_f with use mod_assimilation

b) Where obs_index_p is allocated in the routine:
Allocate also coords_obs_f(2,cnt)

c) In the loop where obs_index_p is initialized add:

coords_obs_f(1,cnt)=REAL(j)
coords_obs_f(2,cnt)=REAL(i)

Note: We treat all coordinates as REAL variables
even we use grid point indices her

PDAF tutorial – Analysis step in offline mode

obs_op_f_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Implementation of observation operator
for full observation domain

1. Copy functionality from obs_op_pdaf.F90

2. Rename

• dim_obs_p to dim_obs_f

• m_state_p to m_state_f

Note:

The renaming is just for consistency. Quantities referring to the full
observations should be recognizable by _f

PDAF tutorial – Analysis step in offline mode

init_obs_f_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Fill PDAF’s full observation vector

1. Copy functionality from init_obs_pdaf.F90

2. Rename

• dim_obs_p to dim_obs_f

• observation_p to observation_f

Note:

The renaming is just for consistency. Quantities referring to the full
observations should be recognizable by _f

PDAF tutorial – Analysis step in offline mode

init_dim_l_pdaf.F90

Set the vector size dim_l of the local analysis domain

Further set the coordinates of the local analysis domain and the
indices of the elements of the local state vector in the global state
vector

Each single grid point is a local analysis domain in the example

1. Set dim_l = 1

2. Compute the coordinates:

• Include coords_l with use mod_assimilation

coords_l(1) = REAL(CEILING(REAL(domain_p)/REAL(ny)))

coords_l(2) = REAL(domain_p) - (coords_l(1)-1)*REAL(ny)

Note: coords_l will be used later for computing the distance of
observations form the local analysis domain in init_dim_l_pdaf

PDAF tutorial – Analysis step in offline mode

init_dim_l_pdaf.F90 (2)

3. Set indices of the elements of the local state vector in the global state
vector

a) Include id_lstate_in_pstate
with use mod_assimilation

b) Allocate id_lstate_in_pstate(dim_l)
(Deallocate first if already alloced)

c) Specify the index: It’s identical to domain_p here
(because we only have a single model variable)

id_lstate_in_pstate(1) = domain_p

PDAF tutorial – Analysis step in offline mode

init_dim_obs_l_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Set the size of the observation vector for the local analysis domain

As for the global filter, this is the longest routine (~100 lines)

Only direct output: dim_obs_l

Operations:

1. Include coordinates coords_l with use mod_assimilation

2. Determine coordinate range for observations

3. Count observations within prescribed localization radius

4. Set index array for local observations (id_lobs_in_fobs) and array
of distances of local observations (distance_l)

Note: The index array id_lobs_in_fobs is re-used for an efficient
implementation of g2l_obs_pdaf. The local distance array distance_l is
re-used in prodrinva_l_pdaf avoiding to recompute distances.

PDAF tutorial – Analysis step in offline mode

init_dim_obs_l_pdaf.F90 (2)

PDAF tutorial – Analysis step in offline mode

2. Determine coordinate range for local observations
1. Declare real :: limits_x(2), limits_y(2)
2. Include cradius with use mod_assimilation

3. Set lower and upper limits. E.g. for x-direction

limits_x(1) = coords_l(1) - cradius
if (limits_x(1) < 1.0) limits_x(1) = 1.0
limits_x(2) = coords_l(1) + cradius
if (limits_x(2) > real(nx)) limits_x(2) = real(nx)

(analogous for y-direction)

Note: Using limits_x, limits_y is not strictly required, but it can
make the search for local observations more efficient
If the localization is only based on grid point indices,
the coordinates could be handled as integer values

PDAF tutorial – Analysis step in offline mode

init_dim_obs_l_pdaf.F90 (3)

PDAF tutorial – Analysis step in offline mode

3. Count local observations (within distance cradius)

dim_obs_l = 0
DO i = 1, dim_obs_f

IF (“coords_obs(:,i) within coordinate limits”) THEN
Compute distance between coords_obs and coords_l
IF (distance <= cradius) &

dim_obs_l = dim_obs_l + 1
END IF

END DO

Note:
For efficiency, we only compute distance for observations within
coordinate limits limits_x, limits_y. Valid local observations reside
within circle of radius cradius which is checked with distance.

PDAF tutorial – Analysis step in offline mode

init_dim_obs_l_pdaf.F90 (4)

4. Set index array for local observations

 Index of a local observation in the full observation vector

1. Include id_obs_in_fobs and distance_l
with use mod_assimilation

2. Allocate id_obs_in_fobs(dim_obs_l)

3. Fill index array:
cnt = 0
DO i = 1, dim_obs_f

IF (“coords_obs(:,i) within coordinate limits”) THEN
Compute distance between coords_obs and coords_l
IF (distance <= cradius) THEN

cnt = cnt + 1
id_lobs_in_fobs(cnt) = i
distance_l(cnt) = distance

END …

PDAF tutorial – Analysis step in offline mode

g2l_state_pdaf.F90 & l2g_state_pdaf.F90

g2l_state_pdaf: Initialize state vector for local analysis domain
from global state vector

l2g_state_pdaf: Initialize global state vector
from state vector for local analysis domain

 The templates provide a generic implementation
using the array id_lstate_in_fstate

➜ We use the templates without any changes!

Note: The PDAFlocal module introduced in PDAF 2.3 allows to implement
without using these two routines. Please see the tutorial slides for the offline

implementation with PDAF-OMI for a description on how to use the
PDAFlocal routines. It can be used independently from PDAF-OMI.

PDAF tutorial – Analysis step in offline mode

g2l_obs_pdaf.F90 & init_obs_l_pdaf.F90

g2l_obs_pdaf: Initialize local observed state vector from full observed
vector

init_obs_l_pdaf: Initialize local vector of observations

 The templates provide a generic implementation
using the array id_lobs_in_fobs

➜ We use the templates without any changes!

Note:
init_obs_l_pdaf requires that the full observation vector
is stored in the array obs_f

PDAF tutorial – Analysis step in offline mode

prodrinva_l_pdaf.F90

Compute the product of the inverse observation error covariance
matrix with some other matrix
+ apply observation localization (weighting)

 The weighting and the product are fully implemented for a diagonal
observation error covariance matrix with constant variance

➜ When we re-use the array distance_l initialized in
init_dim_obs_l_pdaf, the template can be used without
changes.

PDAF tutorial – Analysis step in offline mode

Done!

PDAF tutorial – Analysis step in offline mode

Now, the analysis step for local ESKTF in offline mode is fully
implemented.

The implementation allows you now to use the local filters LESTKF,
LETKF, and LSEIK

Not usable are EnKF and SEEK (PDAF does not have localization for
these filters)

For testing one can vary localization parameters:

cradius – the localization radius

locweight – the weighting method

Default are cradius=0.0 (observation at single grid point) and
locweight=1 (uniform weight)

PDAF tutorial – Analysis step in offline mode

A complete local analysis step

PDAF tutorial – Analysis step in offline mode

We now have a fully functional analysis step including localization

 It can be adapted to multiple model fields, 3 dimensions, different
observations, etc.

 It can be used even with big models

• if computing time is no concern

• and if the computer has sufficient memory
(e.g. ensemble array with dimension 107 and 20 members
requires about 1.6 GB)

 Parallelization is required

• if the problem is too big for a single process

PDAF tutorial – Analysis step in offline mode

2 Using Parallelization

PDAF tutorial – Analysis step in offline mode

2a) Use local filter OpenMP-parallelization

PDAF tutorial – Analysis step in offline mode

OpenMP

PDAF tutorial – Analysis step in offline mode

• OpenMP is so-called shared-memory parallelization

• Support for OpenMP is built into current compilers
(needs to be activated by compiler-flag)

• Define OpenMP in the code by compiler directives: !$OMP …

• Shared-memory parallelization:

• Run several OpenMP “threads” (like processes in MPI)

• All threads can access the same array in memory, but perform
different operations

• Typical is loop-parallelization: Each thread executes some
part of a loop. For example, a fraction of a vector:

!$OMP parallel do
DO i = 1, 1000

a(i) = b(i) + c(i)
ENDDO

With 2 threads, typically:
• thread 1 runs i=1 to 500
• thread 2 runs i=501 to 1000

PDAF tutorial – Analysis step in offline mode

OpenMP – what‘s relevant for PDAF

The local filters (LESTKF, LETKF, LSEIK, LNETF) are parallelized with
OpenMP

 The loop over local analysis domains is distributed over threads

To make this work:

 Take into account, whether a variable is

• shared (all treads see the same) or

• private (each thread has it’s own copy)

 Variables referring to a local analysis domain (e.g. coords_l)
have to be private

 This is ensured using the declaration ‘THREADPRIVATE’

OpenMP-support is fully implemented in the templates!

PDAF tutorial – Analysis step in offline mode

Running the tutorial program

Run analogously to case without parallelization

• cd to /tutorial/classical/offline_2D_serial

• Set environment variable PDAF_ARCH or set it in Makefile
(e.g. linux_gfortran)

• Check and edit the make include file to activate OpenMP
• for gfortran: OPT = … -fopenmp

• for Intel compiler: OPT = … -openmp

• Compile by running ‘make’

• Set the number of OpenMP threads as environment variable, e.g.

• for bash: export OMP_NUM_THREADS=2

• for tcsh: setenv OMP_NUM_THREADS 2

• Run the program as without OpenMP-parallelization

PDAF tutorial – Analysis step in offline mode

Results from running with OpenMP parallelization

PDAF tutorial – Analysis step in offline mode

The results should be identical to those without parallelization

If the program is compiled with activated OpenMP-parallelization,
you will see in the output of the analysis step the line
--- Use OpenMP parallelization with 2 threads

PDAF tutorial – Analysis step in offline mode

OpenMP in the local filters

PDAF supports the use of OpenMP in the localized filters
(LESTKF, LETKF, LSEIK, LNETF, LKNETF)

Settings to make OpenMP work are in two files:

prodrinva_l_pdaf.F90

mod_assimilation.F90

The template files include the settings for OpenMP

PDAF tutorial – Analysis step in offline mode

prodrinva_l_pdaf.F90

Two variables have attribute ‘save’:

domain_save mythread

Both variables are set private to the thread by
!$OMP THREADPRIVATE(mytread, domain_save)

(thus each OpenMP thread has a different value of the variables)

Both variables are used to ensure ‘nice’ screen output.

PDAF tutorial – Analysis step in offline mode

mod_assimilation.F90

Last line of mod_assimilation.F90 is

!$OMP THREADPRIVATE(coords_l, id_lstate_in_pstate, id_lobs_in_fobs, …
distance_l)

 These variables are specific for each local analysis domain

 The variables are declared in mod_assimilation.F90

 The declaration ‘THREADPRIVATE’ ensures that each variable can
have a different value in the different threads

PDAF tutorial – Analysis step in offline mode

2b) Parallelized global filter

PDAF tutorial – Analysis step in offline mode

Parallelize the analysis step

PDAF tutorial – Analysis step in offline mode

Implementation Strategy:
Take files from global analysis without parallelization
and add the parallelization

Parallelization:

• Perform analysis step using multiple processors

• Split the state vector into equal parts to distribute the work

Notation for parallelization:

• Suffix _p marks variables with process-specific values

• Parallelization variables are declared in the module
mod_parallel

PDAF tutorial – Analysis step in offline mode

Decomposition of model field

PDAF tutorial – Analysis step in offline mode

Want to distribute the state vector over the processes

➜ Split state vector into approximately equal continuous parts

➜ Corresponds to distribution along second index of model fiel
(the first one in continuous in memory)

For 36 grid points we have uniform distributions for 2,3,4,6,or 9
processes (other numbers are possible)

Distribution of
state vector
over 4 processes

PDAF tutorial – Analysis step in offline mode

Running the parallel tutorial program

PDAF tutorial – Analysis step in offline mode

• cd to /tutorial/classical/offline_2D_parallel

• Set environment variable PDAF_ARCH or set it in Makefile
(e.g. linux_gfortran_openmpi)

• Clean existing files with ‘make cleanall’
(This also removes the compiled PDAF library from previous tests)

• Compile by running ‘make’
(this also builds the PDAF library again; now with parallelization)

• Run the program with

mpirun –np X ./PDAF_offline

(X>0; optimal are X=1,2,3,4,6 because then
ny=36 is dividable by X)

PDAF tutorial – Analysis step in offline mode

Impact of the parallelization

PDAF tutorial – Analysis step in offline mode

• Ensemble array is distributed ➜ less memory per process
(visible in the memory display at the end of the screen output):

$ mpirun –np 1 ./PDAF_offline

PDAF Memory overview

Allocated memory (MB)
state and A: 0.005 MB (persistent)

ensemble array: 0.044 MB (persistent)
analysis step: 0.027 MB (temporary)

$ mpirun –np 4 ./PDAF_offline

Allocated memory (MB)
state and A: 0.002 MB (persistent)

ensemble array: 0.011 MB (persistent)
analysis step: 0.019 MB (temporary)

PDAF tutorial – Analysis step in offline mode

Impact of the parallelization (2)

PDAF tutorial – Analysis step in offline mode

Screen output shows some influence of the parallelization
Parallelization - Filter on model PEs:

Total number of PEs: 4
Number of parallel model tasks: 1

PEs for Filter: 4
PEs per ensemble task and local ensemble sizes:

Task 1
#PEs 4

N 9

At analysis step:

--- PE-domain 1 dimension of observation vector 8
--- PE-domain 2 dimension of observation vector 8
--- PE-domain 3 dimension of observation vector 8
--- PE-domain 4 dimension of observation vector 4

Note: The output lines might be unordered

PDAF tutorial – Analysis step in offline mode

Global ESTKF: Files to be changed for parallelization

PDAF tutorial – Analysis step in offline mode

mod_assimilation.F90

initialize.F90

init_pdaf_offline.F90

init_ens_offline.F90

init_dim_obs_pdaf.F90

obs_op_pdaf.F90

init_obs_pdaf.F90

prodrinva_pdaf.F90

prepoststep_ens_offline.F90

No
change

Fortran module

initialization

analysis step

post step

No
change

PDAF tutorial – Analysis step in offline mode

initialize.F90 – parallelization

PDAF tutorial – Analysis step in offline mode

Initialize the model information – we have: nx, ny, dim_state_p

1. Use additional dimensions from mod_assimilation:
integer :: dim_state
integer, allocatable :: local_dims(:)

2. Rename dim_state_p to dim_state (global dimension)

3. Allocate local_dims(npes_model)

4. Set dim_state_p and local_dims(:)
– distribute dim_state over number of processes

local_dims = FLOOR(REAL(dim_state) / REAL(npes_model))

DO i = 1, (dim_state - npes_model * local_dims(1))

local_dims(i) = local_dims(i) + 1

END DO

dim_state_p = local_dims(mype_model+1)

PDAF tutorial – Analysis step in offline mode

init_ens_offline.F90 – parallelization

PDAF tutorial – Analysis step in offline mode

Initialize ensemble matrix ens_p

Simple parallel variant:

1. Initialize global ensemble array (only one process)

2. Distribute sub-states of ensemble array
(from the process doing step 1 to all others)

1. Required steps – only for mype_filter==0

• Declare array ens and
allocate ens(dim_state, dim_ens)

• Use serial implementation for initialize ens
(replace ens_p by ens)

PDAF tutorial – Analysis step in offline mode

init_ens_offline.F90 – parallelization (2)

PDAF tutorial – Analysis step in offline mode

2. Distribute sub-states of ensemble array

For mype_filter=0

a) Initialize local part of ens_p directly:

ens_p(1:dim_p,1:dim_ens) = ens(1:dim_p,1:dim_ens)

b) Distribute other sub ensembles

DO domain=2, npes_filter

allocate ens_p_tmp(local_dims(domain), dim_ens)

fill ens_p_tmp with part of ens for domain

MPI_Send ens_p_tmp from process 0 to process ‘domain-1’

deallocate ens_p_tmp

PDAF tutorial – Analysis step in offline mode

init_ens_offline.F90 – parallelization (3)

PDAF tutorial – Analysis step in offline mode

2. Distribute sub-states of ensemble array

For all processes with mype_filter>0:

MPI_Recv ens_p_tmp into ens_p

Notes:

• “Classical” MPI communication: MPI_Send/MPI_Recv

• See tutorial code for MPI function calls

• Offset in state vector for mype_filter=k is

sum of local_dims(i) from i=1 to k

• Size of state vector part is local_dims(k)

• The example code is not the most efficient possibility:
Each process could read its own local part of ens_p

PDAF tutorial – Analysis step in offline mode

init_dim_obs_pdaf.F90 – parallelization

PDAF tutorial – Analysis step in offline mode

Operations in case of parallelization:

• Read observation file

• Count number of observations for process-local part of state
vector (dim_obs_p)

• Initialize array obs_p holding process-local available
observations

• Initialize index array telling index of observation point in process-
local state vector

Adapt serial implementation for these operations

PDAF tutorial – Analysis step in offline mode

init_dim_obs_pdaf.F90 – parallelization (2)

PDAF tutorial – Analysis step in offline mode

Count available process-local observations (dim_obs_p):

1. Get offset of local part in global state vector

off_p = Sum over local_dims(i) up to i=mype_filter

2. Now count

cnt = 0
cnt0 = 0
DO j = 1, nx

DO i= 1, ny
cnt0 = cnt0 + 1
IF (cnt0>off_p .AND.

cnt0<=off_p+local_dims(mype_filter+1)) THEN
IF (obs_field(i,j) > -999.0) cnt = cnt + 1

END IF; END DO; END DO
dim_obs_p = cnt

PDAF tutorial – Analysis step in offline mode

init_dim_obs_pdaf.F90 – parallelization (3)

PDAF tutorial – Analysis step in offline mode

Initilialize obs_p and obs_index_p (now process-local parts)

cnt0 = cnt_p = cnt0_p = 0 ! Count grid points
DO j = 1, nx

DO i= 1, ny
cnt0 = cnt0 + 1
IF (cnt0>off_p .AND. &

cnt0<=off_p+local_dims(mype_filter+1)) THEN
cnt0_p = cnt0_p + 1

IF (obs_field(i,j) > -999.0) THEN
cnt_p = cnt_p + 1
obs_index_p(cnt_p) = cnt0_p ! Index
obs_p(cnt_p) = obs_field(i, j) ! observations

END IF; END IF
END DO

END DO

PDAF tutorial – Analysis step in offline mode

prepoststep_ens_offline.F90 – parallelization

PDAF tutorial – Analysis step in offline mode

Post-step routine for the offline mode

Adapt writing of output files for parallelism
ensemble array ens_p is distributed

To do – inverse operations to init_ens_offline
• Use temporary array ens_p_tmp

• For mype_filter>0:
• MPI_Send ens_p to mype_filter=0

• For mype_filter=0:
• Do domain=2, npes_filter
• MPI_Recv into ens_p_tmp

• Initialize part of global array ens with ens_p_tmp

• Write ens into files

PDAF tutorial – Analysis step in offline mode

prepoststep_ens_offline.F90 – parallelization (2)

PDAF tutorial – Analysis step in offline mode

Also in the tutorial implementation

• Collect local mean states (state_p) into a global analysis state
and write to file.

• Collect vector of estimated variance (variance_p) into a global
variance vector. Compute estimated RMS error from it.

PDAF tutorial – Analysis step in offline mode

Done!

PDAF tutorial – Analysis step in offline mode

The analysis step in offline mode with parallelization
is fully implemented now

The implementation allows you now to use the global filters
ESTKF, ETKF, and SEIK

PDAF tutorial – Analysis step in offline mode

2c) Parallelized local filter

PDAF tutorial – Analysis step in offline mode

Impact of the parallelization

PDAF tutorial – Analysis step in offline mode

• Ensemble array is distributed ➜ less memory per process
(visible in the memory display at the end of the screen output):

$ mpirun –np 1 ./PDAF_offline –filtertype 7

Allocated memory (MB)
state and A: 0.010 MiB (persistent)

ensemble array: 0.044 MiB (persistent)
analysis step: 0.020 MiB (temporary)

$ mpirun –np 4 ./PDAF_offline –filtertype 7

Allocated memory (MB)
state and A: 0.003 MiB (persistent)

ensemble array: 0.011 MiB (persistent)
analysis step: 0.020 MiB (temporary)

Note: Memory for analysis step is not changed!

PDAF tutorial – Analysis step in offline mode

Impact of the parallelization (2)

PDAF tutorial – Analysis step in offline mode

Screen output shows some influence of the parallelization
Parallelization - Filter on model PEs:

Total number of PEs: 4

…

At analysis step:

PDAF --- local analysis domains(min/max/avg): 162 162 162.0

PDAF tutorial – Analysis step in offline mode

Parallelize the local analysis step

PDAF tutorial – Analysis step in offline mode

Apapt files from

• global analysis with parallelization and

• localized analysis without parallelization

Parallelization:

• Perform analysis step using multiple processors

• Split the state vector into equal parts to distribute the work

• As we did for the global filter

• Particular for localization:

Take care for local observation regions
(they can reach into state vector parts of other processes)

Notation for parallelization:

• Suffix _p marks variables with process-specific values

PDAF tutorial – Analysis step in offline mode

Local filter LESTKF – parallelization

PDAF tutorial – Analysis step in offline mode

Files to be parallelized
init_n_domains_pdaf.F90

init_dim_obs_f_pdaf.F90

obs_op_f_pdaf.F90

init_obs_f_pdaf.F90

init_dim_l_pdaf.F90

init_dim_obs_l_pdaf.F90

g2l_state_pdaf.F90

g2l_obs_pdaf.F90

init_obs_l_pdaf.F90

prodrinva_l_pdaf

l2g_state_pdaf.F90

Discuss now the files in the order they are called

No
Changes

PDAF tutorial – Analysis step in offline mode

init_n_domains_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Routine to set the number of local analysis domains

n_domains_p: now the number of local analysis domains for the
particular process (according to part of state vector)

To do:
1. Include local_dims with use mod_assimilation
2. Set

n_domains_p = local_dims(mype_filter+1)

PDAF tutorial – Analysis step in offline mode

init_dim_obs_f_pdaf.F90 – parallelization

PDAF tutorial – Analysis step in offline mode

Operations in case of parallelization:
• Read observation file
• Count number of observations for process-local part of state

vector (dim_obs_p)
• Initialize arrays holding process-local available observations

(obs_p) and their coordinates (obs_coords_p)
• Initialize index array (obs_index_p) telling index of a process-

local observation in process-local state vector
• Initialize full number of observations (dim_obs_f), vector of

observations (obs_f), and coordinates (coords_obs_f)

“FULL” observation vector:
All observations required for all local analyses in process-local part
of state vector (Here: Full=All observations for simplicity)

Adapt serial implementation …

PDAF tutorial – Analysis step in offline mode

init_dim_obs_f_pdaf.F90 – parallelization (2)

PDAF tutorial – Analysis step in offline mode

Count process-local observations (dim_obs_p):

1. Include dim_obs_p with use mod_assimilation

2. Get offset off of local part in global state vector
(see global filter)

3. Now count

cnt0 = 0; cnt_p = 0
DO j = 1, nx; DO i= 1, ny
cnt0 = cnt0 + 1

IF (cnt0>=off_p+1 .AND.
cnt0<=off_p+local_dims(mype_filter+1)) THEN

IF (obs_field(i,j) > -999.0) cnt_p = cnt_p + 1
END IF; END DO; END DO

dim_obs_p = cnt_p

PDAF tutorial – Analysis step in offline mode

init_dim_obs_f_pdaf.F90 – parallelization (3)

PDAF tutorial – Analysis step in offline mode

Initialize obs_p, obs_index_p, and coords_obs_p

1. Include obs_index_p, coords_obs_f and obs_f with use
mod_assimilation

2. Add local arrays for obs_p(:) and coords_obs_p(:,:)
3. Adapt allocates to changed names and size dim_obs_p
4. In the loops rename the variables from _f to _p

5. Adapt the loop initializing the array by adding the check for the index
range as for the counting loop

cnt0 = 0; cnt_p = 0; cnt0_p = 0
DO j = 1, nx; DO i= 1, ny
cnt0 = cnt0 + 1

IF (cnt0>=off_p+1 .AND.
cnt0<=off_p+local_dims(mype_filter+1)) THEN

cnt0_p = cnt0_p + 1
IF (obs_field(i,j) > -999.0) THEN ... END IF

END IF; END DO; END DO

PDAF tutorial – Analysis step in offline mode

init_dim_obs_f_pdaf.F90 – parallelization (4)

PDAF tutorial – Analysis step in offline mode

Initialize full quantities (dim_obs_f, obs_f, coords_obs_f)

1. Obtain dim_obs_f by calling PDAF_gather_dim_obs_f

2. Allocate obs_f and coords_obs_f
(deallocate first if already allocated)

3. Obtain obs_f by calling PDAF_gather_obs_f

4. Obtain coords_obs_f by calling PDAF_gather_obs_f

5. Add DEALLOCATE for obs_p and coords_obs_p

Note: It is mandatory to call PDAF_gather_dim_obs_f once before
using the two other functions because it stores dimension information.

Note: The three PDAF functions used here have been added with PDAF
Version 1.13 to avoid that the user implementation needs calls to MPI
functions.

Note: coords_obs_f has to be a REAL array

PDAF tutorial – Analysis step in offline mode

obs_op_f_pdaf.F90 – parallelization

PDAF tutorial – Analysis step in offline mode

Implementation of observation operator
for full observation domain

Difficulty:

• The state vector state_p is local to each process

• Full observed vector goes beyond process boundary

Adapt serial version:

1. Initialize process-local observed state

2. Get full observed state vector using PDAF_gather_obs_f

PDAF tutorial – Analysis step in offline mode

obs_op_f_pdaf.F90 – parallelization (2)

PDAF tutorial – Analysis step in offline mode

1. Initialize process-local observed state m_state_p

a) Include dim_obs_p and obs_index_p
with use mod_assimilation

b) Declare real allocatable array m_state_p(:)

c) Allocate
m_state_p(dim_obs_p)

d) Fill the array

DO i = 1, dim_obs_p
m_state_p(i) = state_p(obs_index_p(i))

END DO

Note:
In the serial version the upper bound of the loop was dim_obs_f
and we filled m_state_f directly

PDAF tutorial – Analysis step in offline mode

obs_op_f_pdaf.F90 – parallelization (3)

PDAF tutorial – Analysis step in offline mode

2. Get full observed state vector

a) Add variable INTEGER :: status

b) Add call to PDAF_gather_obs_f:

CALL PDAF_gather_obs_f(m_state_p, m_state_f, status)

c) Deallocate m_state_p

Note: It is mandatory to call PDAF_gather_dim_obs_f once before
using the two other functions because it stores dimension information.
Usually this was already done in init_dim_obs_f_pdaf

PDAF tutorial – Analysis step in offline mode

Done!

PDAF tutorial – Analysis step in offline mode

Now, the analysis step for local ESKTF with parallelization in offline
mode is fully implemented.

The implementation allows you now to use the local filters LESTKF,
LETKF, and LSEIK

Not usable are EnKF and SEEK (PDAF doesn’t have localization for
SEEK and a different localization scheme for EnKF)

PDAF tutorial – Analysis step in offline mode

3) Hints for adaptions for real models

PDAF tutorial – Analysis step in offline mode

Implementations for real models

• Tutorial demonstrates implementation for simple model

• You can base your own implementation on the tutorial
implementation or the templates provided with PDAF

• Need to adapt most routines, e.g.

• Specify model-specific state vector and its dimension

• Adapt routines handling observations

• Adapt file output:

• need to read and write restart files from specific model

• adapt writing of ensemble mean state in
prepoststep_pdaf

PDAF tutorial – Analysis step in offline mode

Multiple fields in state vector

• Tutorial uses a single 2-dimensional field

• All fields that should be updated by the assimilation have to be part
of the state vector

• For more fields:
• concatenate them in the state vector
• adapt state dimension in init_pdaf

• adapt init_ens_pdaf, collect_state_pdaf,
distribute_state_pdaf, prepoststep_pdaf

• For local filters: Adapt full (_f_) and local (_l_) routines and
g2l_state_pdaf, l2g_state_pdaf, g2l_obs_pdaf

• Note
• It can be useful to define a vector storing the offset (position)

of each field in the state vector
Note: The tutorial for PDAF-OMI includes an example

code using 2 model fields

PDAF tutorial – Analysis step in offline mode

Multiple observed fields

• In tutorial: observed one field at some grid points

• For several observed fields adapt observation routines:
• concatenate observed fields in observation vector
• adapt all observation-handling routines

• Note
• The observation errors can be set differently for each

observed field (e.g. using an array rms_obs)
• The localization radius can be set specific for each observed

field (observation search in init_dim_obs_l_pdaf would
use different cradius for different fields)

• One can use spatially varying observation errors using an
array rms_obs in prodrinva(_l)_pdaf

Note: Using the PDAF-OMI functionality makes the handling of
multiple observation types much easier. See the tutorial slides

for PDAF-OMI on how to use this.

PDAF tutorial – Analysis step in offline mode

The End!

PDAF tutorial – Analysis step in offline mode

Tutorial described example implementations

• Offline mode of PDAF

• Simple 2D example

• Square root filter ESTKF

• global and with localization

• without and with parallelization

• Extension to more realistic cases possible with limited coding

• Applicable also for large-scale problems

For full documentation of PDAF
and the user-implemented routines

see http://pdaf.awi.de

