
PDAF Tutorial

Implementation of the analysis step

in offline mode

using PDAF-OMI

http://pdaf.awi.de

V1.13 – 2024-08-25

PDAF tutorial – Analysis step in offline mode

Implementation Tutorial for PDAF offline

PDAF tutorial – Analysis step in offline mode

We demonstrate the implementation

of an offline analysis step with PDAF

using the template routines provided by PDAF

The example code is part of the PDAF source code package
downloadable at http://pdaf.awi.de

(This tutorial is compatible with PDAF V2.3 and later)

http://pdaf.awi.de/

PDAF tutorial – Analysis step in offline mode

Implementation Tutorial for PDAF offline

PDAF tutorial – Analysis step in offline mode

This is just an example!

For the complete documentation of PDAF’s interface

see the documentation

at http://pdaf.awi.de

PDAF tutorial – Analysis step in offline mode

Overview

PDAF tutorial – Analysis step in offline mode

Focus on Error Subspace Transform Kalman Filter
(ESTKF, Nerger et al., Mon. Wea. Rev. 2012)

4 Parts

1. Without parallelization 2. With MPI-parallelization
a) Global filter a) Global filter
b) Localized filter b) Localized filter

(and OpenMP-parallelization)

We recommend to first implement the global filter. The localized
filter re-uses routines of the global filter.

We assume that 1a is implemented before 1b and 1a is
implemented before 2a (1b before 2b).

PDAF tutorial – Analysis step in offline mode

Contents

PDAF tutorial – Analysis step in offline mode

0a) Files for the tutorial 6
0b) The model 10
0c) State vector and observation vector 12
0d) PDAF offline mode 15

1) Filters without parallelization 19
1a) Global filter 20
1b) Local filter 45

2) Using parallelization 63
2a) Use local filter with OpenMP-parallelization 64
2b) Parallelized global filter 70
2c) Parallelized local filter 87

3) Hints for adaptions for real models 95

PDAF tutorial – Analysis step in offline mode

0a) Files for the Tutorial

PDAF tutorial – Analysis step in offline mode

Tutorial implementation

PDAF tutorial – Analysis step in offline mode

Files are in the PDAF package

Directories:

/tutorial/offline_2D_serial (only OpenMP-parallelization)

/tutorial/offline_2D_parallel (with MPI parallelization)

• Fully working implementations of user codes

• PDAF core files are in /src
Makefile refers to it and compiles the PDAF library

• Only need to specify the compile settings (compiler, etc.) by
environment variable PDAF_ARCH. Then compile with ‘make’.

PDAF tutorial – Analysis step in offline mode

Templates for offline mode

PDAF tutorial – Analysis step in offline mode

Directory: /templates/offline_omi

• Contains all required files

• Contains also
command line parser, memory counting, timers
(convenient but not required)

To generate your own implementation:

1. Copy directory to a new name

2. Complete routines for your model

3. Set base directory (BASEDIR) in Makefile

4. Set $PDAF_ARCH

5. Compile

PDAF tutorial – Analysis step in offline mode

PDAF library

PDAF tutorial – Analysis step in offline mode

Directory: /src

• The PDAF library is not part of the template
• PDAF is compiled separately as a library

and linked when the assimilation program is compiled
• Makefile includes a compile step for the PDAF library
• One can run ‘make’ in the main directory of PDAF

(requires setting of PDAF_ARCH)

$PDAF_ARCH

• Environment variable to specify the compile specifications
• Definition files in /make.arch
• Define by, e.g.

setenv PDAF_ARCH linux_gfortran (tcsh/csh)
export PDAF_ARCH=linux_gfortran (bash)

PDAF tutorial – Analysis step in offline mode

0b) The Model

PDAF tutorial – Analysis step in offline mode

2D „Model“

PDAF tutorial – Analysis step in offline mode

• See the separate tutorial
slides about the model

• Simple 2-dimensional grid
domain

• 36 x 18 grid points (longitude
x latitude)

• True state: sine wave in
diagonal direction

• No dynamics for offline mode

• Stored in text file (18 rows) –
true.txt

5 10 15 20 25 30 35

5

10

15

True field, initial time

-1

-0.5

0

0.5

1

PDAF tutorial – Analysis step in offline mode

0c) state vector and observation vector

PDAF tutorial – Analysis step in offline mode

State vector – some terminology used later

• PDAF performs computations on state vectors

• State vector
• Stores model fields in a single vector
• Tutorial shows this for one 2-dimensional field
• Multiple fields are just concatenated into the vector
• All fields that should be modified by the assimilation have to be

in the state vector

• State dimension
• Is the length of the state vector

(the sum of the sizes of the model fields in the vector)

• Ensemble array
• Rank-2 array which stores state vectors in its columns

PDAF tutorial – Analysis step in offline mode

Observation vector

• Observation vector
• Stores all observations in a single vector
• Tutorial shows this for one 2-dimensional field
• Multiple observed fields are just concatenated into the vector

• Observation dimension
• Is the length of the observation vector

(sum of the observations over all observed fields in the vector)

• Observation operator
• Operation that computes the observed part of a state vector
• Tutorial only selects observed grid points
• The operation can involve interpolation or integration

depending on type of observation

PDAF tutorial – Analysis step in offline mode

0d) PDAF offline mode

PDAF tutorial – Analysis step in offline mode

Offline mode

PDAF tutorial – Analysis step in offline mode

• Two separate programs

• “Model” – performs ensemble integrations

• “PDAF_offline” – perform analysis step

• Couple both programs through files

1. “PDAF_offline” reads ensemble forecast files

2. Performs analysis step

3. Writes analysis ensemble files (restart files for “Model”)

4. “Model” reads restart files and performs ensemble
integration

PDAF tutorial – Analysis step in offline mode

Programs in offline mode

PDAF tutorial – Analysis step in offline mode

Model

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Do i=1, nsteps

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

• Run for each ensemble member
• Write restart files

• Read restart files (ensemble)
• Compute analysis step
• Write new restart files

Assimilation
program

Aaaaaaaa

Aaaaaaaa

aaaaaaaa
a

Start

Stop

init_parallel_pdaf

init_pdaf

assimilation_pdaf

PDAF tutorial – Analysis step in offline mode

PDAF_offline: General program structure

PDAF tutorial – Analysis step in offline mode

program main_offline

init_parallel_pdaf
initialize communicators
(not relevant without parallelization)

initialize
initialize model information

init_pdaf
initialize parameters for PDAF
and read ensemble

assimilation_pdaf
perform analysis
(by call to PDAF_put_state_X)

end program

PDAF tutorial – Analysis step in offline mode

1 Filters without parallelization

PDAF tutorial – Analysis step in offline mode

1a) Global filter without parallelization

PDAF tutorial – Analysis step in offline mode

Running the tutorial program

PDAF tutorial – Analysis step in offline mode

• Do cd /tutorial/offline_2D_serial

• Set environment variable PDAF_ARCH or specify it when running
make (e.g. linux_gfortran)

• Compile by running ‘make’ (or ‘make PDAF_ARCH=…’)
(next slide will discuss possible compile issues)

• Run the program with ./PDAF_offline

• Inputs are read in from /tutorial/inputs_offline

• Outputs are written in /tutorial/offline_2D_serial

• Plot result, e.g. with Python:

python ../plotting/plot_file.py state_ana.txt

PDAF tutorial – Analysis step in offline mode

Requirements for compiling PDAF

PDAF tutorial – Analysis step in offline mode

PDAF requires libraries for BLAS and LAPACK

• Libraries to be linked are specified in the include file for make
in /make.arch (file according to PDAF_ARCH)

• For $PDAF_ARCH=linux_gfortran the specification is

LINK_LIBS =-L/usr/lib -llapack -lblas -lm

• If the libraries are at another non-default location, one has to
change the directory name (/usr/lib)

• Some systems or compilers have special libraries
(e.g. MKL for ifort compiler)

PDAF needs to be compiled for double precision

• Needs to be set at compiler time in the include file for make:

• For gfortran: OPT = -O3 -fdefault-real-8

PDAF tutorial – Analysis step in offline mode

Files in the tutorial implementation

PDAF tutorial – Analysis step in offline mode

/tutorial/inputs_offline

• true.txt true state

• state_ini.txt initial estimate (ensemble mean)

• obs.txt observations

• ens_X.txt (X=1,…, 9) ensemble members

/tutorial/offline_2D_serial (after running PDAF_offline)

• state_ana.txt analysis state estimate

• ens_X_ana.txt (X=1,…,9) analysis ensemble members

PDAF tutorial – Analysis step in offline mode

Result of the global assimilation

PDAF tutorial – Analysis step in offline mode

• The analysis state is closer to the true field than the initial estimate

• Truth and analysis are not identical
(the ensemble does not allow it)

PDAF tutorial – Analysis step in offline mode

Template contains all required files

 just need to be filled with functionality

mod_assimilation_offline.F90

initialize.F90

init_pdaf_offline.F90

init_ens_offline.F90

callback_obs_pdafomi.F90

obs_A_pdafomi.F90

prepoststep_ens_offline.F90

Files for PDAF

initialization

analysis step

post step

Fortran module

PDAF tutorial – Analysis step in offline mode

mod_assimilation.F90

PDAF tutorial – Analysis step in offline mode

Fortran module

• Declares the parameters used to configure PDAF

• Add model-specific variables here
(see next slides)

• Will be included (with ‘use’) in the user-written routines

PDAF tutorial – Analysis step in offline mode

initialize.F90

PDAF tutorial – Analysis step in offline mode

Routine initializes the model information

1. Define 2D mesh in mod_assimilation.F90

integer :: nx, ny

2. In initialize.F90 include nx, ny, and dim_state_p
with use mod_assimilation

3. Define mesh size in initialize.F90

nx = 36

ny = 18

4. Define state dimension in initialize.F90

dim_state_p = nx * ny

Note: Some variables end with _p.
It means that the variable is specific for a process.
(Not relevant until we do parallelization)

PDAF tutorial – Analysis step in offline mode

init_pdaf_offline.F90

PDAF tutorial – Analysis step in offline mode

Routine sets parameters for PDAF, calls PDAF_init
to initialize the data assimilation, and PDAF_set_offline_mode to activate
the offline mode:

Template contains list of available parameters
(declared in and used from mod_assimilation)

Include variables for observation ‘A’ with
USE obs_A_pdafomi, ONLY: assim_A, rms_obs_A

For the example set :
1. dim_ens = 9

2. rms_obs_A = 0.5

3. assim_A = .true.

4. filtertype = 6 (for ESTKF)

In call to PDAF_init, the name of the ensemble initialization routine is specified:
init_ens_offline

PDAF tutorial – Analysis step in offline mode

init_ens_offline.F90

PDAF tutorial – Analysis step in offline mode

A call-back routine called by PDAF_init:

• Implemented by the user
• Its name is specified in the call to PDAF_init
• It is called by PDAF through a defined interface:

SUBROUTINE init_ens_offline(filtertype, dim_p,
dim_ens, state_p, Uinv, ens_p, flag)

Declarations in header of the routine shows “intent” (input, output):

REAL, INTENT(out) :: ens_p(dim_p, dim_ens)

Note:
All call-back routines have a defined interface and show the intent of
the variables. Their header comment explains what is to be done in
the routine.

PDAF tutorial – Analysis step in offline mode

init_ens_offline.F90 (2)

PDAF tutorial – Analysis step in offline mode

Initialize ensemble matrix ens_p

1. Include nx, ny with use mod_assimilation

2. Declare and allocate real :: field(ny, nx)

3. Loop over ensemble files (i=1,dim_ens)

for each file:

• read ensemble state into field

• store contents of field in column i of ens_p

Note:
Columns of ens_p are state vectors.
Store following storage of field in memory (column-wise in Fortran)

PDAF tutorial – Analysis step in offline mode

The analysis step

PDAF tutorial – Analysis step in offline mode

At this point the initialization of PDAF is complete:
• Forecast ensemble is initialized
• Filter algorithm and its parameters are chosen

Next:

• Implement user-routines for analysis step

• All are call-back routines:

 User-written, but called by PDAF

Note:
Some variables end with _p.
It means that the variable is specific for a process.
(Not relevant until we do parallelization)

PDAF tutorial – Analysis step in offline mode

callback_obs_pdafomi.F90

File collecting interface routines for the observation routines called by PDAF

For each observation type we need to add subroutine calls

• Example observation is just called A, defined in obs_A_pdafomi.F90

In init_dim_obs_pdafomi:
• Insert USE obs_A_pdafomi, ONLY: assim_A, init_dim_obs_A
• Declare INTEGER :: dim_obs_A and set this to zero
• Insert IF (assim_A) CALL init_dim_obs_A(step, dim_obs_A)

In obs_op_pdafomi:
• Insert USE obs_A_pdafomi, ONLY: obs_op_A
• Insert CALL obs_op_A(dim_p, dim_obs, state_p, ostate)

(The other observations (B, C) in the file show
how to use multiple observations)

PDAF tutorial – Analysis step in offline mode

obs_A_pdafomi.F90

PDAF-OMI observation module

• There is a long header with information

Implementation steps from template

• Copy file to name according to observation (’A’)

• Replace ‘TYPE’ by name of observation (’A’)

• Implement
• init_dim_obs_A

• obs_op_A

PDAF tutorial – Analysis step in offline mode

obs_A_pdafomi.F90 (2)

With PDAF-OMI

• Observation Information is stored in Fortran data type obs_f

• It is allocated with generic name thisobs
(Motivated by object-oriented programming)

• A single variable, e.g. disttype, is accessed in the form
thisobs%disttype

TYPE obs_f
INTEGER :: doassim ! Whether to assimilate this obs. type
INTEGER :: disttype ! Type of distance computation
INTEGER :: ncoord ! Number of coordinates
INTEGER, ALLOCATABLE :: id_obs_p(:,:)

! Indices of observations in state vector
…

END TYPE obs_f

PDAF tutorial – Analysis step in offline mode

init_dim_obs_A in obs_A_pdafomi.F90

Main routine to initialize observation information

• read observation file

• count number of available observations
(direct output to PDAF: dim_obs_p)

• initialize array holding available observations

• initialize array of index of observation in global state vector

• Call PDAFomi_gather_obs to finalize initializations

PDAF tutorial – Analysis step in offline mode

init_dim_obs_A in obs_A_pdafomi.F90 (2)

First initializations:

• Specify whether observation is assimilated

IF (assim_A) thisobs%doassim = 1

(assim_A is included with use and set in init_pdaf)

• Specify type of distance computation (0=Cartesian)

thisobs%disttype = 0

• Number of coordinates used for distance computation

thisobs%ncoord = 2

Note: Parts of the template that are not needed
here are deleted in init_dim_obs_A

PDAF tutorial – Analysis step in offline mode

init_dim_obs_A in obs_A_pdafomi.F90 (3)

PDAF tutorial – Analysis step in offline mode

Preparations and reading of observation file:

1. Include nx, ny with use mod_assimilation

2. declare and allocate real array obs_field(ny, nx)

3. read observation file:

OPEN (12, file='inputs_offline/obs.txt’, &
status='old')

DO i = 1, ny

READ (12, *) obs_field(i, :)

END DO

CLOSE (12)

PDAF tutorial – Analysis step in offline mode

init_dim_obs_A in obs_A_pdafomi.F90 (4)

Count available observations (dim_obs_p):

1. Declare integer :: cnt, cnt0

2. Now count

cnt = 0

DO j = 1, nx

DO i= 1, ny

IF (obs_field(i,j) > -999.0) cnt = cnt + 1

END DO

END DO

dim_obs_p = cnt

PDAF tutorial – Analysis step in offline mode

init_dim_obs_A in obs_A_pdafomi.F90 (5)

Now we need to initialize
• observation vector obs_p
• inverse variances ivar_obs_p
• index array thisobs%id_obs_p
• observation coordinates ocoord_p

1. All arrays are declared in the template

2. Allocate
• obs_p(dim_obs_p)
• ivar_obs_p(dim_obs_p)
• thisobs%id_obs_p(dim_obs_p)
• ocoord_p(2, dim_obs_p)

3. Initialize these arrays

Note:
The arrays only contain information about valid observations;
one could store observations already in files in this way.

PDAF tutorial – Analysis step in offline mode

init_dim_obs_A in obs_A_pdafomi.F90 (6)

3. Now initialize

cnt0 = 0 ! Count grid points
cnt = 0 ! Count observations
DO j = 1, nx
DO i= 1, ny
cnt0 = cnt0 + 1
IF (obs_field(i,j) > -999.0) THEN
cnt = cnt + 1
thisobs%id_obs_p(cnt) = cnt0 ! Index
obs_p(cnt) = obs_field(i, j) ! observations
ocoord_p(1, cnt) = REAL(j) ! X-coordinates
ocoord_p(2, cnt) = REAL(i) ! Y-coordiantes

END IF
END DO

END DO
ivar_obs_p(:) = 1.0 / (rms_obs_A*rms_obs_A)

PDAF tutorial – Analysis step in offline mode

obs_op_A in obs_A_pdafomi.F90

Implementation of observation operator
acting one some state vector

Input: state vector state_p

Output: observed state vector ostate

init_dim_obs_A initialized all required information stored in ‘thisobs’

Observation ‘A’ is defined at grid points

1. Include observation operator routine:

USE PDAFomi, ONLY: PDAFomi_obs_op_gridpoint

2. Call observation operator

CALL PDAFomi_obs_op_gridpoint(thisobs, state_p, ostate)

Note: OMI provides different observation operators,
e.g. for linear interpolation

PDAF tutorial – Analysis step in offline mode

prepoststep_ens_offline.F90

PDAF tutorial – Analysis step in offline mode

Post-step routine for the offline mode:

Already there in the template:
1. Compute ensemble mean state state_p
2. Compute estimated variance vector variance
3. Compute estimated root mean square error rmserror_est

Required extension:

4. Write analysis ensemble into files used for model restart
(Analogous to reading in init_ens_offline)

Possible (useful) extension:

5. Write analysis state (ensemble mean, state_ana.txt)

PDAF tutorial – Analysis step in offline mode

Done!

PDAF tutorial – Analysis step in offline mode

The analysis step in offline mode is fully implemented now

The implementation allows you now to use all global filters!
(ESTKF, EKTF, SEIK, EnKF, NETF, PF)

Not usable is SEEK (It’s deprecated)

PDAF tutorial – Analysis step in offline mode

A complete analysis step

PDAF tutorial – Analysis step in offline mode

We now have a fully functional analysis step
- if no localization is required!

Possible extensions for a real application:

Adapt routines for

 Multiple model fields
➜ Store full fields consecutively in state vector

 Third dimension
➜ Extend state vector

 Different observation types
➜ Tutorial code shows example of 3 observation types

 Other file type (e.g. binary or NetCDF)
➜ Adapt reading/writing routines

PDAF tutorial – Analysis step in offline mode

1b) Local filter without parallelization

PDAF tutorial – Analysis step in offline mode

Localization

PDAF tutorial – Analysis step in offline mode

Localization is usually required for high-dimensional systems

• Update small regions (S)
(e.g. single grid points, single vertical columns)

• Consider only observations within cut-off distance (D),
e.g. defined by the ellipse or rectangle

• Weigh observations according to distance from S

PDAF tutorial – Analysis step in offline mode

The FULL observation vector

PDAF tutorial – Analysis step in offline mode

• A single local analysis at S (single grid point) need observations
from domain D

• A loop of local analyses over all S needs all observations

• This defines the full observation vector

• Why distinguish full and all observations?

➜ They can be different in case of parallelization!

• Example:

 Split domain in left and right halves

 Some of the local analyses in left half
need observations from the right side.

 Depending on localization radius not all observations from
the right side might be needed for the left side analyses

PDAF tutorial – Analysis step in offline mode

Running the tutorial program

PDAF tutorial – Analysis step in offline mode

• Compile as for the global filter

• Run the program with ./PDAF_offline OPTIONS

• OPTIONS are always of type –KEYWORD VALUE

• Possible OPTIONS are

• -filtertype 7 (select LESTKF if not set in init_pdaf_offline)

• -cradius 5.0 (set localization cut-off radius, 0.0 by default,
any positive value should work)

• -locweight 2 (set weight function for localization, default=0
for constant weight of 1; possible are integer
values 0 to 4; see init_pdaf_offline)

PDAF tutorial – Analysis step in offline mode

Result of the local assimilation

PDAF tutorial – Analysis step in offline mode

./PDAF_offline -filtertype 7

• Default: zero localization radius (cradius=0.0)

• State is changed only at observation locations

PDAF tutorial – Analysis step in offline mode

Result of the local assimilation (2)

PDAF tutorial – Analysis step in offline mode

./PDAF_offline -filtertype 7 -cradius 10.0

• All local analysis domains are influenced (all see observations)

• Up to 16 observations used in a single local analysis (average 9.6)

Note: The the shape of the ensemble members favors the global filter
in this experiment

PDAF tutorial – Analysis step in offline mode

Result of the local assimilation (2)

PDAF tutorial – Analysis step in offline mode

./PDAF_offline -filtertype 7 -cradius 10.0 –locweight 2

• Observation weighting by 5th-order polynomial

• Analysis field is smoother than before
because of distance-weight of observations

PDAF tutorial – Analysis step in offline mode

Result of the local assimilation (3)

PDAF tutorial – Analysis step in offline mode

./PDAF_offline -filtertype 7 -cradius 40.0

• Large radius: All local analysis domains see all observations

• Result identical to global filter

PDAF tutorial – Analysis step in offline mode

Local filter LESTKF

PDAF tutorial – Analysis step in offline mode

• Localized filters are a variant of the global filters

• User written files for global filter can be widely re-used

• Additional user-written files to handle local part

• No changes to:

initialize.F90

init_ens_offline.F90

prepoststep_ens_offline.F90

• Change in init_pdaf_offline.F90:

Set filtertype = 7

(You can also set it later on command line)

PDAF tutorial – Analysis step in offline mode

Local filter LESTKF (2)

Additional files for local analysis step

init_n_domains_pdaf.F90

init_dim_l_pdaf.F90

Additional routine in callback_obs_pdafomi.F90:

init_dim_obs_l_pdafomi

Discuss now the files in the order they are called

localize
state vector

localize
observations

PDAF tutorial – Analysis step in offline mode

init_n_domains_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Routine to set the number of local analysis domains

Output: n_domains_p

For the example: number of grid points (nx * ny)

To do:
1. Include nx, ny with use mod_assimilation

2. Set
n_domains_p = nx * ny

PDAF tutorial – Analysis step in offline mode

init_dim_l_pdaf.F90

Set the vector size dim_l of the local analysis domain

Further set the coordinates of the local analysis domain and the
indices of the elements of the local state vector in the global state
vector

Each single grid point is a local analysis domain in the example

1. Set dim_l = 1

2. Compute the coordinates:

• Include coords_l with use mod_assimilation

coords_l(1) = REAL(CEILING(REAL(domain_p)/REAL(ny)))

coords_l(2) = REAL(domain_p) - (coords_l(1)-1)*REAL(ny)

Note: coords_l will be used later for computing the distance of
observations form the local analysis domain in
init_dim_obs_l_pdafomi

PDAF tutorial – Analysis step in offline mode

init_dim_l_pdaf.F90 (2)

3. Set indices of the elements of the local state vector in the global state
vector

a) Declare
INTEGER, ALLOCATABLE :: id_lstate_in_pstate(:)

b) Allocate id_lstate_in_pstate(dim_l)

c) Specify the index: It is identical to domain_p here
(because we only have a single model variable):
id_lstate_in_pstate(1) = domain_p

d) Provide id_lstate_in_pstate by calling
CALL PDAFlocal_set_indices(dim_l, id_lstate_in_pstate)

PDAF tutorial – Analysis step in offline mode

callback_obs_pdafomi.F90

File collecting interface routines for the observation routines called by PDAF

For each observation type we need to add subroutine calls

• The example observation is just called A, defined in obs_A_pdafomi.F90

In init_dim_obs_l_pdafomi:
• Insert
USE obs_A_pdafomi, ONLY: init_dim_obs_l_A

• Insert
CALL init_dim_obs_l_A(domain_p, step, dim_obs, dim_obs_l)

(The other observations (B, C) in the file show
how to use multiple observations)

PDAF tutorial – Analysis step in offline mode

init_dim_obs_l_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Set size of the observation vector for the local analysis domain and initialize local
observation information

Only direct output: dim_obs_l

Operations:

1. With use mod_assimilation

• Include coordinates coords_l

• Include localization variables (cradius, locweight, sradius)

2. Call PDAFomi_init_dim_obs_l to perform necessary operations

Note: we use a fixed radius cradius here. One could make it varying with the
local analysis domain. Also it could vary with observation type.

PDAF tutorial – Analysis step in offline mode

Done!

PDAF tutorial – Analysis step in offline mode

Now, the analysis step for local ESKTF in offline mode is fully
implemented.

The implementation allows you now to use all local filters!
(LESTKF, LETKF, LSEIK, LNETF)

Not usable is LEnKF
(It needs one more routine (localize_covariance_pdafomi) which we
don’t discuss here; but it’s coded in the tutorial code)

For testing one can vary localization parameters:

cradius – the localization cut-off radius

locweight – the weighting method

Default are cradius=0.0 (observation at single grid point) and
locweight=1 (uniform weight)

PDAF tutorial – Analysis step in offline mode

A complete local analysis step

PDAF tutorial – Analysis step in offline mode

We now have a fully functional analysis step including localization

 It can be adapted to multiple model fields, 3 dimensions, different
observations, etc.

 It can be used even with big models

• if computing time is no concern

• and if the computer has sufficient memory
(e.g. ensemble array with dimension 107 and 20 members
requires about 1.6 GB)

 Parallelization is required if the problem is too big for a single
process

PDAF tutorial – Analysis step in offline mode

2 Using Parallelization

PDAF tutorial – Analysis step in offline mode

2a) Use local filter OpenMP-parallelization

PDAF tutorial – Analysis step in offline mode

OpenMP

PDAF tutorial – Analysis step in offline mode

• OpenMP is so-called shared-memory parallelization

• Support for OpenMP is built into current compilers
(needs to be activated by compiler-flag)

• Define OpenMP in the code by compiler directives: !$OMP …

• Shared-memory parallelization:

• Run several OpenMP “threads” concurrently

• All threads can access the same array in memory, but perform
different operations

• Typical is loop-parallelization: Each thread executes some part
of a loop. For example, operate on a fraction of a vector:

!$OMP parallel do
DO i = 1, 1000

a(i) = b(i) + c(i)
ENDDO

With 2 threads, typically:
• thread 1 runs i=1 to 500
• thread 2 runs i=501 to 1000

PDAF tutorial – Analysis step in offline mode

OpenMP – what‘s relevant for PDAF

The local filters (LESTKF, LETKF, LSEIK, LNETF) are parallelized with
OpenMP

 The loop over local analysis domains is distributed over threads

To make this work:

 Take into account, whether a variable is

• shared (all treads see the same) or

• private (each thread has it’s own copy)

 Variables referring to a local analysis domain (e.g. coords_l)
have to be private

 This is ensured using the declaration ‘THREADPRIVATE’

OpenMP-support is fully implemented in the templates!

PDAF tutorial – Analysis step in offline mode

Running the tutorial program

Run analogously to case without parallelization

• cd to /tutorial/offline_2D_serial

• Set environment variable PDAF_ARCH or set it in Makefile
(e.g. linux_gfortran)

• Check and edit the make include file to activate OpenMP
• for gfortran: OPT = … -fopenmp

• for Intel compiler: OPT = … -openmp

• Compile by running ‘make’

• Set the number of OpenMP threads as environment variable, e.g.

• for bash: export OMP_NUM_THREADS=2

• for tcsh: setenv OMP_NUM_THREADS 2

• Run the program as without OpenMP-parallelization

PDAF tutorial – Analysis step in offline mode

Results from running with OpenMP parallelization

PDAF tutorial – Analysis step in offline mode

The results should be identical to those without parallelization

If the program is compiled with activated OpenMP-parallelization,
you will see in the output of the analysis step the line

--- Use OpenMP parallelization with 2 threads

PDAF tutorial – Analysis step in offline mode

OpenMP in the local filters

PDAF supports the use of OpenMP in the localized filters
(LESTKF, LETKF, LSEIK, LNETF, LKNETF)

Settings to make OpenMP work are in: mod_assimilation.F90

Last line of case-specific part of mod_assimilation.F90 is

!$OMP THREADPRIVATE(coords_l)

 This variable is specific for each local analysis domain

 The variable is declared in mod_assimilation.F90

 The declaration ‘THREADPRIVATE’ ensures that the variable can
have a different value in the different threads

PDAF tutorial – Analysis step in offline mode

2b) Parallelized global filter

PDAF tutorial – Analysis step in offline mode

Parallelize the analysis step

PDAF tutorial – Analysis step in offline mode

Implementation Strategy:
Take files from global analysis without parallelization
and add the parallelization

Parallelization:

• Perform analysis step using multiple processors

• Split the state vector into equal parts to distribute the work

Notation for parallelization:

• Suffix _p marks variables with process-specific values

• Parallelization variables are declared in the module
mod_parallel

PDAF tutorial – Analysis step in offline mode

Decomposition of model field

PDAF tutorial – Analysis step in offline mode

We want to distribute the state vector over the processes

➜ Split state vector into approximately equal continuous parts

➜ Corresponds to distribution along second index of model field
(the first one in continuous in memory)

For 36 grid points we have uniform distributions for 2,3,4,6,or 9
processes (other numbers are possible)

Distribution of
state vector
over 4 processes

PDAF tutorial – Analysis step in offline mode

Running the parallel tutorial program

PDAF tutorial – Analysis step in offline mode

• cd to /tutorial/offline_2D_parallel

• Set environment variable PDAF_ARCH or set it in Makefile
(e.g. linux_gfortran)

• Clean existing files with ‘make cleanall’
(This also removes the compiled PDAF library from previous tests)

• Compile by running ‘make’
(this also builds the PDAF library again)

• Run the program with

mpirun –np X ./PDAF_offline

(X>0; optimal are X=1,2,3,4,6 because then
ny=36 is dividable by X)

PDAF tutorial – Analysis step in offline mode

Impact of the parallelization

PDAF tutorial – Analysis step in offline mode

• Ensemble array is distributed ➜ less memory per process
(visible in the memory display at the end of the screen output):

$ mpirun –np 1 ./PDAF_offline

Allocated memory (MB)
state and A: 0.005 MiB (persistent)

ensemble array: 0.044 MiB (persistent)
analysis step: 0.027 MiB (temporary)

$ mpirun –np 4 ./PDAF_offline

Allocated memory (MB)
state and A: 0.002 MiB (persistent)

ensemble array: 0.011 MiB (persistent)
analysis step: 0.019 MiB (temporary)

Note: Memory for analysis step is not changed!

PDAF tutorial – Analysis step in offline mode

Impact of the parallelization (2)

PDAF tutorial – Analysis step in offline mode

Screen output shows some influence of the parallelization

Parallelization - Filter on model PEs:
Total number of PEs: 4

Number of parallel model tasks: 1
PEs for Filter: 4

PEs per ensemble task and local ensemble sizes:
Task 1
#PEs 4

N 9

At analysis step:

--- PE-domain 1 dimension of observation vector 8
--- PE-domain 2 dimension of observation vector 8
--- PE-domain 3 dimension of observation vector 8
--- PE-domain 4 dimension of observation vector 4

Note: The output lines might be unordered

PDAF tutorial – Analysis step in offline mode

Global ESTKF: Files to be changed for parallelization

PDAF tutorial – Analysis step in offline mode

mod_assimilation.F90

initialize.F90

init_pdaf_offline.F90

init_ens_offline.F90

obs_A_pdafomi.F90

callback_obs_pdafomi.F90

prepoststep_ens_offline.F90

No
change

Fortran module

initialization

analysis step

post step

No
change

PDAF tutorial – Analysis step in offline mode

initialize.F90 – parallelization

PDAF tutorial – Analysis step in offline mode

Initialize the model information – we have: nx, ny, dim_state_p

1. Use additional dimensions from mod_assimilation:
integer :: dim_state
integer, allocatable :: local_dims(:)

2. Rename dim_state_p to dim_state (global dimension)

3. Allocate local_dims(npes_model)

4. Set dim_state_p and local_dims(:)
– distribute dim_state over number of processes

local_dims = FLOOR(REAL(dim_state) / REAL(npes_model))

DO i = 1, (dim_state - npes_model * local_dims(1))

local_dims(i) = local_dims(i) + 1
END DO

dim_state_p = local_dims(mype_model+1)

PDAF tutorial – Analysis step in offline mode

init_ens_offline.F90 – parallelization

PDAF tutorial – Analysis step in offline mode

Initialize ensemble matrix ens_p

Simple parallel variant:

1. Initialize global ensemble array (only one process)

2. Distribute sub-states of ensemble array
(from the process doing step 1 to all others)

1. Required steps – only for mype_filter==0

• Declare array ens and
allocate ens(dim_state, dim_ens)

• Use serial implementation for initialize ens
(replace ens_p by ens)

PDAF tutorial – Analysis step in offline mode

init_ens_offline.F90 – parallelization (2)

PDAF tutorial – Analysis step in offline mode

2. Distribute sub-states of ensemble array

For mype_filter=0

a) Initialize local part of ens_p directly:

ens_p(1:dim_p,1:dim_ens) = ens(1:dim_p,1:dim_ens)

b) Distribute other sub ensembles

DO domain=2, npes_filter

allocate ens_p_tmp(local_dims(domain), dim_ens)

fill ens_p_tmp with part of ens for domain

MPI_Send ens_p_tmp from process 0 to process ‘domain-1’

deallocate ens_p_tmp

PDAF tutorial – Analysis step in offline mode

init_ens_offline.F90 – parallelization (3)

PDAF tutorial – Analysis step in offline mode

2. Distribute sub-states of ensemble array

For all processes with mype_filter>0:

MPI_Recv ens_p_tmp into ens_p

Notes:

• “Classical” MPI communication: MPI_Send/MPI_Recv

• See tutorial code for MPI function calls

• Offset in state vector for mype_filter=k is

sum of local_dims(i) from i=1 to k

• Size of state vector part is local_dims(k)

• The example code is not the most efficient possibility:
Each process could read its own local part of ens_p

PDAF tutorial – Analysis step in offline mode

init_dim_obs_A in obs_A_pdafomi.F90

Operations in case of parallelization

• read observation file

• count number of available observations for process-local part
of state vector (direct output to PDAF: dim_obs_p)

• initialize array holding process-local available observations

• initialize array of index of observation in process-local state
vector

• Call PDAFomi_gather_obs to finalize initializations

Adapt serial implementation for these operations

PDAF tutorial – Analysis step in offline mode

init_dim_obs_A - parallelization (1)

PDAF tutorial – Analysis step in offline mode

Count available process-local observations (dim_obs_p):

1. Get offset of local part in global state vector

off_p = Sum over local_dims(i) up to i=mype_filter

2. Now count

cnt = 0
cnt0 = 0
DO j = 1, nx

DO i= 1, ny
cnt0 = cnt0 + 1
IF (cnt0>off_p .AND.

cnt0<=off_p+local_dims(mype_filter+1)) THEN
IF (obs_field(i,j) > -999.0) cnt = cnt + 1

END IF; END DO; END DO
dim_obs_p = cnt

PDAF tutorial – Analysis step in offline mode

init_dim_obs_A - parallelization (2)

PDAF tutorial – Analysis step in offline mode

Initilialize obs_p and obs_index_p (now process-local parts)

cnt0 = cnt_p = cnt0_p = 0 ! Count grid points
DO j = 1, nx
DO i= 1, ny
cnt0 = cnt0 + 1
IF (cnt0>off_p .AND. &

cnt0<=off_p+local_dims(mype_filter+1)) THEN
cnt0_p = cnt0_p + 1
IF (obs_field(i,j) > -999.0) THEN
cnt_p = cnt_p + 1
obs_index_p(cnt_p) = cnt0_p ! Index
obs_p(cnt_p) = obs_field(i, j) ! observations
ocoord_p(1, cnt_p) = REAL(j) ! X-coordinates
ocoord_p(2, cnt_p) = REAL(i) ! Y-coordinates

END IF; END IF
END DO

END DO

PDAF tutorial – Analysis step in offline mode

prepoststep_ens_offline.F90 – parallelization

PDAF tutorial – Analysis step in offline mode

Post-step routine for the offline mode

Adapt writing of output files for parallelism
ensemble array ens_p is distributed

To do – inverse operations to init_ens_offline
• Use temporary array ens_p_tmp

• For mype_filter>0:
• MPI_Send ens_p to mype_filter=0

• For mype_filter=0:
• Do domain=2, npes_filter
• MPI_Recv into ens_p_tmp

• Initialize part of global array ens with ens_p_tmp

• Write ens into files

PDAF tutorial – Analysis step in offline mode

prepoststep_ens_offline.F90 – parallelization (2)

PDAF tutorial – Analysis step in offline mode

Also in the tutorial implementation

• Collect local mean states (state_p) into a global analysis state
and write to file.

• Collect vector of estimated variance (variance_p) into a global
variance vector. Compute estimated RMS error from it.

PDAF tutorial – Analysis step in offline mode

Done!

PDAF tutorial – Analysis step in offline mode

The analysis step in offline mode with parallelization
is fully implemented now

The implementation allows you now to use the global filters
ESTKF, ETKF, EnKF, and SEIK

PDAF tutorial – Analysis step in offline mode

2c) Parallelized local filter

PDAF tutorial – Analysis step in offline mode

Impact of the parallelization

PDAF tutorial – Analysis step in offline mode

• Ensemble array is distributed ➜ less memory per process
(visible in the memory display at the end of the screen output):

$ mpirun –np 1 ./PDAF_offline –filtertype 7

Allocated memory (MB)
state and A: 0.010 MiB (persistent)

ensemble array: 0.044 MiB (persistent)
analysis step: 0.020 MiB (temporary)

$ mpirun –np 4 ./PDAF_offline –filtertype 7

Allocated memory (MB)
state and A: 0.003 MiB (persistent)

ensemble array: 0.011 MiB (persistent)
analysis step: 0.020 MiB (temporary)

Note: Memory for analysis step is not changed!

PDAF tutorial – Analysis step in offline mode

Impact of the parallelization (2)

PDAF tutorial – Analysis step in offline mode

Screen output shows some influence of the parallelization

Parallelization - Filter on model PEs:
Total number of PEs: 4

…

At analysis step:

PDAF --- local analysis domains(min/max/avg): 162 162 162.0
…
PDAFomi --- Number of full observations 28

PDAF tutorial – Analysis step in offline mode

Parallelize the local analysis step

PDAF tutorial – Analysis step in offline mode

Take files from

• global analysis with parallelization and

• localized analysis without parallelization

and adapt

Parallelization:

• Perform analysis step using multiple processors

• Split the state vector into equal parts to distribute the work

• As we did for the global filter

Notation for parallelization:

• Suffix _p marks variables with process-specific values

PDAF tutorial – Analysis step in offline mode

Required files to be parallelized
init_n_domains_pdaf.F90

callback_obs_pdaf_omi.F90

obs_A_pdafomi.F90

init_dim_obs_A

obs_op_A

init_dim_obs_l_A

init_dim_l_pdaf.F90

Local filter LESTKF – parallelization

PDAF tutorial – Analysis step in offline mode

From local filter – no changes

From parallel global filter
– no changes

From local filter – no changes

Needs adaption

Needs adaption in
coordinates

PDAF tutorial – Analysis step in offline mode

init_n_domains_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Routine to set the number of local analysis domains

n_domains_p: now the number of local analysis domains for the
particular process (according to part of state vector)

To do:
1. Include local_dims with use mod_assimilation
2. Set

n_domains_p = local_dims(mype_filter+1)

PDAF tutorial – Analysis step in offline mode

init_dim_l_pdaf.F90

PDAF tutorial – Analysis step in offline mode

Routine to set the local state dimension, local coordinates and indices

coords_l: Still the coordinates of the local analysis domain in the
full model domain

To do:
1. Determine offset of domain_p due to parallelization

off_p = 0
DO i = 1, mype_filter

off_p = off_p + local_dims(i)
END DO

2. Compute coordinates accounting for offset
coords_l(1) = REAL(CEILING(REAL(domain_p+off_p)/REAL(ny)))
coords_l(2) = REAL(domain_p+off_p) - (coords_l(1)-1)*REAL(ny)

PDAF tutorial – Analysis step in offline mode

Done!

PDAF tutorial – Analysis step in offline mode

Now, the analysis step for local ESKTF with parallelization in offline
mode is fully implemented.

The implementation allows you now to use all local filters!
(LESTKF, LETKF, LSEIK, LNETF, LKNETF)

Not usable is LEnKF
(It needs one more routine (localize_covariance_pdafomi) which we
don’t discuss here; but it’s coded in the tutorial code)

PDAF tutorial – Analysis step in offline mode

3) Hints for adaptions for real models

PDAF tutorial – Analysis step in offline mode

Implementations for real models

• Tutorial demonstrates implementation for simple model

• You can base your own implementation on the tutorial
implementation or the templates provided with PDAF

• Need to adapt most routines, e.g.

• Specify model-specific state vector and its dimension

• Adapt routines handling observations

• Adapt file output:

• need to read and write restart files from specific model

• adapt writing of ensemble mean state in
prepoststep_pdaf

PDAF tutorial – Analysis step in offline mode

Multiple fields in state vector

• Both fields should be updated by the assimilation
have to be part of the state vector

➜ see tutorial for online mode with serial model
for example of 2 fields (online_2D_serialmodel_2fields)

• For two or more fields:

• concatenate them in the state vector

• adapt state dimension in init_pdaf

• Add arrays for field offsets and dimensions in init_pdaf

• adapt init_ens_pdaf, collect_state_pdaf,
distribute_state_pdaf, prepoststep_pdaf

• For local filters: Adapt init_dim_l_pdaf

• Adapt observation modules (in particular thisobs%id_obs_p)
for correct offset of observed field in state vector

Fi
el

d
1

Fi
el

d
2

State vector
with 2 fields

PDAF tutorial – Analysis step in offline mode

Multiple observed fields

• In tutorial:

• We discussed observations of one field at some grid points
• Example code shows three different observation types

• For several observed fields adapt observation routines:

• Create a new observation module (obs_OBSTYPE_pdafomi.F90)
• Add calls to routine in callback_obs_pdafomi.F90

• Note
• The observation errors can be set differently for each observed field

• The localization radius can be set specific for each observed field (use
a different variable cradius_OBSTYPE)

PDAF tutorial – Analysis step in offline mode

The End!

PDAF tutorial – Analysis step in offline mode

Tutorial described example implementations

• Offline mode of PDAF

• Simple 2D example

• Implementation supports various filters

• global and with localization

• without and with parallelization

• Extension to more realistic cases possible with limited coding

• Applicable also for large-scale problems

For full documentation of PDAF
and the user-implemented routines

see http://pdaf.awi.de

