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and Wolfgang Hiller

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

∗Corresponding author address: Lars Nerger, Alfred Wegener Institute for Polar and Marine Research,

Am Handelshafen 12, 27570 Bremerhaven, Germany.

E-mail: lars.nerger@awi.de

1



ABSTRACT

In recent years, several ensemble-based Kalman filter algorithms have been developed that

have been classified as ensemble square-root Kalman filters. Parallel to this development,

the SEIK (Singular “Evolutive” Interpolated Kalman) filter has been introduced and applied

in several studies. Some publications note that the SEIK filter is an ensemble Kalman filter

or even an ensemble square-root Kalman filter. This study examines the relation of the

SEIK filter to ensemble square-root filters in detail. It shows that the SEIK filter is indeed

an ensemble-square root Kalman filter. Furthermore, a variant of the SEIK filter, the Error

Subspace Transform Kalman Filter (ESTKF), is presented that results in identical ensemble

transformations to those of the Ensemble Transform Kalman Filter (ETKF) while having

a slightly lower computational cost. Numerical experiments are conducted to compare the

performance of three filters (SEIK, ETKF, and ESTKF) using deterministic and random

ensemble transformations. The results show better performance for the ETKF and ESTKF

methods over the SEIK filter as long as this filter is not applied with a symmetric square

root. The findings unify the separate developments that have been performed for the SEIK

filter and the other ensemble square-root Kalman filters.

1. Introduction

The original Ensemble Kalman Filter (EnKF, Evensen 1994) has been developed with the

aim to enable the application of sequential data assimilation algorithms based on the Kalman

filter with large-scale numerical models. Burgers et al. (1998) and Houtekamer and Mitchell

(1998) clarified that the EnKF requires an ensemble of perturbed observations for statistical
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consistency. The EnKF represents the state estimate by the mean of an ensemble of model

state realizations while the ensemble covariance matrix represents the corresponding error

covariance matrix. The prediction of the error covariance matrix is computed by propagating

each model state of the ensemble with the full, usually nonlinear, numerical model.

Alternative filter algorithms have been developed that perform the analysis without per-

turbed observations. These filters use an explicit transformation of the state ensemble.

Among these developments are the Ensemble Transform Kalman filter (ETKF, Bishop et al.

2001), the Ensemble Adjustment Kalman filter (EAKF, Anderson 2001) and the Ensemble

Square-root Kalman filter with sequential processing of observations (EnSRF, Whitaker and

Hamill 2002). These filters also have been reviewed by Tippett et al. (2003) in a uniform

way as ensemble square-root Kalman filters. Another ensemble square-root Kalman filter

has been derived by Evensen (2004).

The ensemble-based SEIK (Singular “Evolutive” Interpolated Kalman) filter has been

introduced by Pham et al. (1998) a few years before the introduction of the ensemble square-

root Kalman filters. The behavior of SEIK filter for nonlinear models was examined by Pham

(2001). Comparison studies between the SEIK filter and the EnKF (Brusdal et al. 2003;

Nerger et al. 2005a) argue that the SEIK filter can be more efficient than the EnKF because

a smaller ensemble could be used to achieve comparable estimation errors. In addition, the

computations used in the SEIK filter are much less costly than those of the EnKF (Nerger

et al. 2007).

Overall, the developments in the SEIK filter and the ensemble square-root Kalman filters

have been independent. In publications considering ensemble square-root filters, the SEIK

filter is only occasionally mentioned. For example, Sakov and Oke (2008) note that the
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SEIK and SEEK filters “essentially represent another flavor” of the ensemble square-root

filter. Similarly, publications using the SEIK filter, describe it as an efficient alternative to the

EnKF (e.g. Triantafyllou et al. 2003; Nerger et al. 2005a). Thus, while there are indications

that the SEIK filter is an ensemble square-root filter, there is yet no clear classification of

the SEIK filter or an identification of the square-root used in this algorithm.

The aim of this work is to examine the relation of the SEIK filter to the ensemble-

square-root Kalman filters in detail. For this task, the ETKF and the SEIK filter will be

reviewed in section 2. In section 3 it is shown that the SEIK filter is an ensemble square

root filter and its relation to the ETKF is discussed. A variant of the SEIK filter that results

in identical ensemble transformations to those of the ETKF, which we term the “Error

Subspace Transform Kalman Filter” (ESTKF), is derived in section 4. The computational

cost of the filters as well as a possible reduction of the cost of the ETKF are discussed in

section 5. Numerical experiments are performed in section 6 to compare the filter behavior

for different variants of the ensemble transformation matrix.

2. Filter Algorithms: ETKF and SEIK

In this section, the mathematical formulations of the ETKF and the SEIK filter are

reviewed and the square-root in the ETKF is identified in analogy to Tippett et al. (2003).

Only the global analysis formulation is considered. A localization (see Nerger et al. 2006;

Hunt et al. 2007) can be formulated in an identical way for both filters.

The ETKF and the SEIK filter are ensemble-based Kalman filters. The state of a physical

system, like the ocean or atmosphere, is estimated at time tk by the state vector xk of size
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n and the corresponding error covariance matrix Pk. An ensemble of m vectors x(α), α =

1, . . . , m, of model state realizations represents these quantities. The state estimate is given

by the ensemble mean

xk :=
1

m

m
∑

i=1

x
(i)
k . (1)

With the ensemble matrix

Xk :=
[

x
(1)
k , . . . ,x

(m)
k

]

, (2)

Pk is given as the ensemble covariance matrix

Pk :=
1

m − 1
X′

k (X′
k)

T
(3)

where X
′

k := Xk − Xk with Xk = [xk, . . . ,xk] is the matrix of ensemble perturbations.

A forecast is computed by integrating the state ensemble using the numerical model until

observations become available. The observations are available in form of the vector yo
k of

size p. The model state is related to the observations by yo
k = Hk(x

f
k) + ǫk where H is the

observation operator, which is assumed to be linear. The vector of observation errors, ǫk, is

assumed to be a white Gaussian distributed random process with covariance matrix R.

The analysis equations of the ETKF and the SEIK filter are discussed separately below.

As all operations are performed at the same time tk, the time index k is omitted.

a. Analysis step of the ETKF

The ETKF has been introduced by Bishop et al. (2001). For the review of the analysis

step of the ETKF, we follow Yang et al. (2009) and Hunt et al. (2007).

The computations performed in the ETKF are based on a square root of the state covari-
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ance matrix given by the ensemble perturbations X′. The analysis state covariance matrix

Pa can be written as a transformation of the forecast ensemble perturbations as

Pa = X
′fA(X

′f)T . (4)

Here, A is an m × m matrix defined by

A−1 := γ−1(m − 1)I + (HX
′f )TR−1HX

′f . (5)

A is frequently denoted as ’transform matrix’. The factor γ is used to inflate the forecast

covariance matrix to stabilize the filter performance.

The state estimate is updated according to

xa = xf + X
′fwETKF (6)

with the weight vector

wETKF := A
(

HX
′f

)T

R−1
(

yo − Hxf
)

. (7)

The square root of the forecast state covariance matrix is given by the perturbation

matrix X
′f up to the scaling by (m − 1)−1. To obtain the square root of the analysis state

covariance matrix, X
′f is transformed as

X
′a = X

′f WETKF . (8)

The weight matrix WETKF is computed from the square-root C with CCT = A as

WETKF :=
√

m − 1CΛ. (9)

Here, Λ is an arbitrary orthogonal matrix of size m × m or the identity. To preserve the

ensemble mean, the vector (1, . . . , 1)T has to be an eigenvector of Λ.
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When the ETKF was introduced by Bishop et al. (2001), the form of the square-root C

was not further specified. Studies about the properties of the ensemble transformation in

different square-root filters (e.g., Wang et al. 2004; Sakov and Oke 2008) have shown that

a symmetric matrix C ensures that the ensemble mean is preserved during the ensemble

transformation. The use of the symmetric square root

Csym := US−1/2UT (10)

has been proposed also for the localized version of the ETKF (LETKF, Hunt et al. 2007).

Eq. (10) can be obtained from the singular value decomposition (SVD) USV = A−1. The use

of matrix Csym from Eq. (10) provides a minimum transformation of the ensemble because

the distance of the square-root from the identity matrix is minimized in the Frobenius norm

(see Yang et al. 2009).

For efficiency, the analysis update of the state estimate (Eq. 6) and the ensemble trans-

formation (Eq. 8) can be combined into a single transformation of X
′f as

Xa = Xf + X
′f

(

W
ETKF

+ WETKF
)

. (11)

with W
ETKF

=
[

wETKF , . . . ,wETKF
]

. This formulation leads directly to the analysis en-

semble, without explicitly updating the state estimate by Eq. (6).

b. Analysis step of the SEIK filter

The SEIK filter has been introduced by Pham et al. (1998) and was described in more

detail by Pham (2001). This review follows Nerger et al. (2006). The original separation

of the analysis step into the state update (“analysis”) and ensemble transformation (“re-
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sampling”) is followed here. The SEIK filter is then explicitly re-formulated as an ensemble

square-root filter analogously to the ETKF in section 3. Quantities that are similar but not

identical to those of the ETKF are marked using a tilde. It is assumed that the forecast

ensemble is identical to that used in the ETKF.

Analysis: The computations of the analysis step update the state estimate and implicitly

update the state covariance matrix from the forecast to the analysis matrix.

In the SEIK filter, the forecast covariance matrix Pf is treated in terms of the forecast

state ensemble Xf by

Pf = LGLT (12)

with

L := Xf T̃, (13)

G := (m − 1)−1
(

T̃T T̃
)−1

. (14)

Here, T̃ is an m × (m − 1) matrix with full rank and zero column sums. Previous studies

have always defined matrix T̃ as

T̃ :=









I(m−1)×(m−1)

01×(m−1)









− 1

m

(

1m×(m−1)

)

(15)

where 0 represents the matrix whose elements are equal to zero and I is the identity. The

elements of the matrix 1 are equal to one. Matrix T̃ implicitly subtracts the ensemble mean

when the matrix L is computed. In addition, T̃ removes the last column of X
′f , thus L is

an n × (m − 1) matrix that holds the first m − 1 ensemble perturbations.

The analysis update of the state estimate is given as a combination of the columns of the
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matrix L by

x̃a = xf + LwSEIK. (16)

Here, the vector wSEIK of size m − 1 is given by

wSEIK := Ã (HL)T R−1
(

yo − Hxf
)

(17)

and the transform matrix Ã of size (m − 1) × (m − 1) is defined by

Ã−1 := ρ̃G−1 + (HL)TR−1HL. (18)

In the SEIK filter, ρ̃ with 0 < ρ̃ ≤ 1 is referred to as the “forgetting factor”. It is the inverse

of the inflation factor γ used in Eq. (5) of the ETKF. The analysis covariance matrix is given

in factorized form by

P̃a = LÃLT (19)

but does not need to be explicitly computed.

For efficiency, the term HL is typically computed as (HXf)T̃. Thus, T̃ operates on the

p × m matrix HXf , while H operates on each ensemble state.

Resampling: After the analysis step, the “resampling” of the ensemble is performed.

Here, the forecast ensemble is transformed such that it represents x̃a and P̃a. The transfor-

mation is performed according to

X̃a = X̃a +
√

m − 1LC̃ΩT . (20)

In previous studies, the SEIK filter was always described to use a Cholesky decomposition

of the matrix Ã−1 to obtain (C̃−1)T C̃−1 = Ã−1. However, other forms of the square-root,

like the symmetric square root used in the ETKF, could be chosen. Section 6 will test the
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influence of the chosen square root on the performance of the filter. The matrix Ω is an

m×(m−1) matrix whose columns are orthonormal and orthogonal to the vector (1, . . . , 1)T .

Traditionally, Ω is described to be a random matrix with these properties. However, using

a deterministic Ω is also valid. The procedure to generate a random Ω (Pham 2001; Hoteit

2001) and a procedure for generating a deterministic variant are provided in the Appendix.

For efficiency, the matrix L can be replaced by XfT̃ (Eq. 13). Then, the matrix T̃ can

be applied from the left to smaller matrices like the weight vector wSEIK or the matrix C̃.

The original formulation of the SEIK filter used the normalization m−1 for the matrix

Pf instead of using the sample covariance matrix that is normalized by (m − 1)−1. For

consistency with other ensemble-based Kalman filters, Nerger and Gregg (2007) introduced

the use of the sample covariance matrix in SEIK, which is also used here. In the SEIK

filter, the ensemble is generated to be consistent with the normalization of Pf . Hence, the

normalization acts only as a scaling factor that influences the equations (3) and (20) as well

as the definition of G in Eq. (14).

3. SEIK as an ensemble square-root filter

To identify the SEIK filter as an ensemble square-root filter, the analysis and resampling

steps of SEIK are combined as a transformation of the square root of Pf . Equation (20) can

be written as

X̃a = X̃a + LWSEIK (21)
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with

WSEIK :=
√

m − 1C̃ΩT . (22)

In addition, the state analysis update (16) can be combined with the ensemble transformation

(21) to

X̃a = Xf + L
(

W
SEIK

+ WSEIK
)

, (23)

with W
SEIK

=
[

wSEIK, . . . ,wSEIK
]

.

Equation (23) performs a transformation of the matrix L analogous to the ensemble

transformation of the ETKF (Eq. 11). Matrix L is the square root of the covariance matrix

Pf used in the SEIK filter. With this, the SEIK filter is clearly an ensemble square-root

filter.

It is particular for the SEIK filter that the matrix L has only m−1 columns, while other

filters use a square-root with m columns. Using m− 1 columns is possible because the rank

of Pf is at most m − 1. The SEIK filter utilizes this property by accounting for the fact

that the sum of each row of the perturbation matrix X
′f is zero. Thus, while the columns

of X
′f are linearly dependent, the columns of L are linearly independent if the rank of Pf

is m− 1. In this case, they build a basis of the error subspace estimated by the ensemble of

model states (for a detailed discussion of the error subspace, see Nerger et al. (2005a)). In

contrast, X
′
can be regarded as a transformation from its m-dimensional column space to

the error subspace of dimension m − 1 (see Hunt et al. 2007).

While the equations of the SEIK filter are very similar to those of the ETKF this does not

automatically imply that their state and error estimates are identical, in particular because

the analyses use matrices of different size. However, if the same forecast ensembles are used
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in the ETKF and the SEIK filter, the analysis state xa and the analysis state covariance

matrix Pa will be identical. This identity is due to the fact that the analysis formulations

of both methods refer to the same error subspace to compute the optimal combination of

ensemble perturbations. A basis of this space is given by L. It is used directly by the SEIK

filter. In contrast, the ETKF utilizes the ensemble representation of the error subspace given

by X′f . Nonetheless, the matrices A (Eq. 5) and Ã (Eq. 18) both describe the same quantity

- an error covariance matrix - in the same space represented by either X
′f or L. Therefore,

the optimization computed in the analysis steps results in the same state and error estimates.

While the identity of xa and Pa for both filters can be established by the argumentation

above, the ensembles that represent these quantities are only unique up to a unitary matrix

B, i.e. X′a = X̃′aB (see, e.g. Livings et al. 2008). For example, this is the case when random

rotations are used to generate Ω or Λ. However, for deterministic transformations and in

the use of the symmetric square root of Ã, the experiments discussed in section 6 indicate

that the differences between the transformation matrices of the SEIK filter and the ETKF

are very small with differences in the matrix entries below 2%.

4. Identical transformations in SEIK and ETKF

The ensemble transformation in the square-root formulation of SEIK, which was discussed

in section 3, generally exhibits very small deviations from the transformation performed by

the ETKF. As the transformation in the ETKF has been described to be the minimum

transformation, it should be desirable to obtain the same transformation with the SEIK

filter. This goal is achieved by a modification of the SEIK filter that is described in this

11



section.

The modification of the SEIK filter is motivated by the properties of the matrix Ω.

In general, Ω is an m × (m − 1) matrix that re-generates m ensemble perturbations in

combination with an ensemble transformation matrix of size (m − 1) × (m − 1). For a

deterministic ensemble transformation, a deterministic form Ω̂ can be used whose elements

are defined by:

Ω̂i,j =































1 − 1
m

1
1√
m

+1
for i = j, i < m

− 1
m

1
1√
m

+1
for i 6= j, i < m

− 1√
m

for i = m

(24)

Geometrically, Ω̂ is the Householder matrix associated with the vector m−1/2(1, . . . , 1)T (see

Appendix). Thus, Ω̂ projects vectors in the ensemble space spanned by Xf onto the error

subspace spanned by L. Like T̃, Ω̂ has a full rank and zero column sums. In addition, the

columns of Ω̂ are orthonormal, which is not the case for T̃. Using Ω̂, one can replace Eqns.

(12) – (14) by

Pf = LΩGΩLT
Ω (25)

and

LΩ := XfΩ̂, (26)

GΩ := (m − 1)−1
(

Ω̂T Ω̂
)−1

= (m − 1)−1I(m−1)×(m−1) . (27)

Now, matrix Ã−1 from Eq. (18) is computed as:

Ã−1
Ω := ρ̃(m − 1)I + (HLΩ)TR−1HLΩ. (28)

Finally, the ensemble transformation (Eq. 20) becomes

X̃a = X̃a +
√

m − 1XfΩ̂C̃ΩΩ̂T (29)
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where C̃Ω is the square-root of ÃΩ. Ω̂C̃ΩΩ̂T is the projection of C̃Ω from the error space

onto the ensemble space. If the symmetric square root is used to compute C̃Ω, the projected

transformation matrix is identical to the matrix C used in the ETKF. In case of random

ensemble transformations, only the rightmost Ω̂ in Eq. (29) is replaced by the random matrix

Ω, while Ω̂ is used at all other places.

This reformulation of the SEIK filter is consistent with its original motivation to compute

the ensemble transformation matrix in the error space and to project the required matrices

onto this space and finally back onto the ensemble space. The choice of T̃ is arbitrary as long

as its column sums are zero and the matrix is of full rank. However, only the application of

Ω̂ results in consistent projections, because it is symmetrically applied in the computation of

A as well as in the ensemble transformation (Eq. 29). Because the ensemble transformation

is performed in the error subspace, the new filter variant is referred to as Error Subspace

Transform Kalman filter (ESTKF). The main difference between the SEIK filter and the

ESTKF is that the application of T̃ in Eq. (13) subtracts the ensemble mean and drops the

last ensemble member. The resulting matrix L actually depends on the order of the ensemble

members in the ensemble matrix Xf , which is arbitrary. In contrast, matrix LΩ defined by

Eq. (26) will be independent of the order of the ensemble members. This is evident from

the action of Ω̂ when computing LΩ: Ω̂ not only subtracts the ensemble mean, but also

subtracts the value of the last column of Xf divided by
√

m from each column. The columns

of Ω̂ are then normalized by an additional division by
√

m
−1

+ 1. These operations ensure

that the value of the last column of Xf is implicitly contained in matrix LΩ.

The use of Ω̂ instead of T̃ does not change the computational cost of the SEIK filter.

The matrix Ω̂ needs also to be initialized in the previous formulation of the SEIK filter. In
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addition, the multiplication of a matrix by Ω̂ has the same cost as the multiplication by T̃.

5. Comparison of the computational costs and algorith-

mic enhancement of the ETKF

The computational cost of the SEIK filter is very similar to that of the ETKF. The

leading costs of both filters are summarized in Table 1. The leading computational cost of

both filter algorithms scales in the same way. However, the cost of the SEIK filter is slightly

lower because of the use of matrix L with m − 1 columns instead of X
′f with m columns.

One second-order term that does not appear explicitly in Table 1 is the computation of

X′f in the ETKF with a cost of O(nm). The SEIK filter applies the matrix T̃ to HXf and

to WSEIK (Eq. 21). In the ESTKF, the matrix Ω̂ is applied analogously. These operations

have a cost of O(p(m− 1)+ m(m− 1)2). In the typical situation, where the state dimension

n is much larger than the observation dimension p and the ensemble size m is smaller than

p, this alternative will be computationally less costly.

The ETKF can be modified to use an analog to matrix T̃. The computation of the

perturbation matrix can be formulated as

X′ = XT (30)

where the m × m matrix T is defined by

T = Im×m − 1

m
1m×m. (31)
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Now, the equations of the ETKF that involve X
′
can be reformulated. Eq. (5) becomes

A−1 = γ−1(m − 1)I +
(

(HXf)T
)T

R−1
(

(HXf)T
)T

(32)

and Eq. (7) is written as

wETKF = A
(

(HXf)T
)T

R−1
(

yo − Hxf
)

. (33)

Further, the transformation equation (11) becomes

Xa = Xf + XfT
(

W
ETKF

+ WETKF
)

. (34)

As in the SEIK filter, this formulation avoids the explicit computation and storage of the

ensemble perturbation matrix X′f . Instead, the matrix T is applied to HXf of size p×m and

to the sum of the weight matrices in Eq. (34) of size m×m. This changes the computational

cost to O(pm + m3) instead of O(nm) for the direct computation of X′f . This formulation

can also be applied with domain localization, but here (HXf)T should be computed globally,

before performing the local analyses.

6. Numerical experiments

a. Experimental setup

In this section, the behavior of the ETKF will be compared with the explicit square-

root formulation of the SEIK filter using the symmetric square-root introduced in section 3

(referred to as SEIK-sqrt) and with the ESTKF. In addition, the original SEIK filter with a

square-root based on Cholesky decomposition from section 2b is applied (referred to as SEIK-

orig). To compare the filters in the standard configuration of the ETKF, experiments with
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deterministic ensemble transformations are conducted. Experiments including a random

rotation are then performed to compare the filters in the standard configuration of the SEIK

filter.

The algorithms are applied in identical twin experiments using the model by Lorenz

(1996), denoted below as L96, that has been further discussed by Lorenz and Emanuel (1998).

The L96 model is a simple nonlinear model that has been used in several studies to examine

the behavior of different ensemble-based Kalman filters (e.g. Anderson 2001; Whitaker and

Hamill 2002; Ott et al. 2004; Sakov and Oke 2008). Here, the same configuration as used by

Janjić et al. (2011) is applied. The model state dimension is set to 40. It is small enough

to allow for the successful application of the filters without localization for reasonably small

ensemble sizes (see e.g. Sakov and Oke 2008). In our experiments, the localization mainly

allowed for the use of smaller ensemble sizes compared to the global analysis, while the

relative behavior of the filters was the same as without localization. Thus, for simplicity,

only results for global filters are discussed below. The model as well as the filter algorithms

are part of the release of the Parallel Data Assimilation Framework (PDAF, Nerger et al.

2005b, available online at http://pdaf.awi.de).

For the twin experiments, a trajectory over 60000 time steps is computed from the initial

state of constant value of 8.0, but with x20 = 8.008 (see Lorenz and Emanuel 1998). This

trajectory represents the ”truth” for the data assimilation experiments. Observations of the

full state are assimilated, which are generated by adding uncorrelated random normal noise

of unit variance to the true trajectory. The observations are assimilated at each time step

with an offset of 1000 time steps to omit the spin-up period of the model.

The initial ensemble for all experiments is generated by second-order exact sampling from
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the variability of the true trajectory (see Pham 2001). Identical initial ensembles are used

for all filter variants.

All experiments are performed over 50000 time steps. The ensemble size as well as the

forgetting factor are varied in the experiments. For the ETKF, the covariance inflation is

also expressed in terms of the forgetting factor (i.e. γ = ρ−1 is used in Eq. (5)). Following

the motivation of the SEIK filter as a low-rank filter, the ensembles used here are of a size

that is at most equal to the state dimension.

Ten sets of experiments with different random numbers for the initial ensemble genera-

tion are performed for each combination of ensemble size and forgetting factor to assess the

dependence of the results on the initial ensemble. The performance of the filters is assessed

using the root mean square (RMS) error averaged over the 50000 time steps of each exper-

iment. The RMS errors are then averaged over each set of ten experiments with different

random numbers for the ensemble generation. We refer to this mean error as MRMSE. Note

that the full length of the true trajectory is only used to generate the initial ensemble. For

the computation of the RMS errors, only the time steps 1000 to 51000 of the true trajectory

are used.

b. Results with deterministic ensemble transformations

First, the performance of the filters is studied when deterministic ensemble transforma-

tions are used. This is the common configuration for the ETKF. In this case, the rotation

matrix Λ in Eq. (9) of the ETKF is the identity. In the SEIK-orig, SEIK-sqrt and ESTKF

formulations, the deterministic matrix Ω̂ defined by Eq. (24) is used. For the SEIK-orig
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filter, a Cholesky decomposition of Ã−1 in Eq. (20) is applied, while the other filters use the

symmetric square root.

The left column of figure 1 shows the MRMSE for the four filter variants as a function

of the forgetting factor and the ensemble size. Filter divergence is defined for an MRMSE

larger than one. A white field indicates a parameter set for which the filter diverges in at

least one of the ten experiments.

The ETKF and SEIK-sqrt methods provide almost identical results, with some differences

mostly close to the edge to filter divergence. The differences between the results from the

ETKF and the ESTKF are even smaller. While mathematically, both variants are identical,

the numerical results differ slightly close to the edge to filter divergence. Here, the results of

each set of 10 experiments with different random numbers show a larger variability. Thus, the

behavior of the filters is less stable in this region and small differences can lead to significant

differences. For example in the case with m = 40 and a forgetting factor of 0.99, the ESTKF

still converges while the ETKF diverges. However, the divergence occurs only in three of the

ten experiments, which is counted as divergence in the computation of the mean MRMSE.

The differences in the MRMSE for the ETKF and ESTKF result from the distinct analysis

formulations of both filters. These become visible with the finite numerical precision of the

computations over the long assimilation experiments of 50000 analysis steps. When one

considers only the first analysis step, the difference between the transformation matrices is

of order O(10−15). The differences in the ensemble transformation matrices of ETKF and

SEIK-sqrt are of order O(10−3). While these differences are small with a difference up to 2%

of the actual values of the transformation matrix, they can lead to a slightly larger deviation

of the MRMSE for the SEIK-sqrt from the MRMSE of ESTKF and ETKF.
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The behavior of the SEIK-orig is distinct from the other filters. The filter diverges in

most cases with a forgetting factor of 0.97 and above. In contrast, the other filters diverge

only for a forgetting factor of at least 0.99. In addition, the minimum MRMSE obtained

with SEIK-orig using the deterministic Ω̂ is 0.192 in contrast to the MRMSE of about 0.180

obtained with ETKF and SEIK-sqrt. This difference is statistically significant.

c. Results with random ensemble transformations

The original SEIK filter was always described using a random transformation matrix Ω

that preserves the ensemble mean and covariance matrix. Here, the performance of the four

filter methods is examined using random rotations. Thus, Λ in Eq. (9) is now used as a

mean-preserving random matrix. In SEIK-orig and SEIK-sqrt, a random matrix Ω is used

(see Appendix for its construction). In the ESTKF a random matrix Ω is only used for the

computation of the weight matrix WSEIK in Eq. (22). Because Λ and Ω have distinct sizes

and are generated by different schemes, the random rotations applied in the ETKF will be

distinct from those used in the SEIK filters and the ESTKF.

The MRMSE for the four filter variants with random transformations is shown in the

right column of figure 1. The randomization results in almost identical MRMSE for all four

methods. This indicates that the ensembles of the four methods are statistically of equal

quality. Significant differences between the four filters only occur close to the edge to filter

divergence, where the filters’ behavior is less stable. The fact that the results of SEIK-orig

are comparable to those of the other filters shows that the traditional use of the Cholesky

decompostion of Ã−1 in Eq. (20) in SEIK-orig does not deteriorate the state estimate.
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The smallest obtained MRMSE is 0.1754. Thus, the MRMSE is slightly smaller with

random than with deterministic transformations. This behavior is consistent with the find-

ings by Sakov and Oke (2008). The difference to the MRMSE obtained with deterministic

transformations is statistically significant.

d. Ensemble quality

The inferior behavior of SEIK-orig in case of deterministic ensemble transformations

can be related to a suboptimal representation of the ensemble. The analysis equations

of the filter algorithms based on the Kalman filter assume that the errors are Gaussian

distributed. Lawson and Hansen (2004) discussed the effects of nonlinearity on the example

of the classical EnKF with perturbed observations and the deterministic ensemble square-

root filter (Whitaker and Hamill 2002). They found that the ensemble distributions remain

closer to Gaussian in the case of the stochastic EnKF.

The ensemble quality can be assessed on the basis of the skewness and kurtosis of the

ensembles. These statistical moments will be non-zero if the ensembles are non-Gaussian.

Table 2 shows the median and the semi-interquartile range (SIQR) of the skewness and

kurtosis for experiments with m = 40 and a forgetting factor of ρ = 0.97. The median of

the skewness is about equal for all four filters. However, the SIQR is larger for SEIK-orig

than for the other filters. Thus, it is more likely that the ensemble is skewed when applying

SEIK-orig. Further, the median and SIQR of the kurtosis are much larger for SEIK-orig

than for the filters using the symmetric square root. Thus, the ensemble distributions of

SEIK-sqrt, ESTKF, and ETKF are closer to Gaussian distributions than the distribution
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of SEIK-orig. The stronger deviation from Gaussianity of the ensemble for SEIK-orig is

frequently caused by outliers.

When random ensemble rotations are applied, the statistics of skewness and kurtosis are

almost identical for all four methods. The median of the skewness is about zero with an

SIQR of 0.24. The kurtosis has a median of -0.26 with an SIQR of 0.37. Thus, the values of

SIQR and median are closer to zero than in the case of deterministic transformations. This

behavior can be attributed to the removal of ensemble outliers by the random rotation (see

Sakov and Oke 2008; Anderson 2010).

7. Conclusion

This study examined the Singular “Evolutive” Interpolated Kalman (SEIK) filter. It was

shown that the SEIK filter belongs to the class of ensemble square-root Kalman filters. In

addition, a variant of the SEIK filter was developed that results in ensemble transforma-

tions that are identical to those of the ETKF, but has at a slightly lower computational

cost. The variant is referred to as Error Subspace Transform Kalman Filter (ESTKF) be-

cause it explicitly projects the ensemble onto the error subspace and computes the ensemble

transformation in this space.

Numerical twin experiments with the Lorenz-96 model and deterministic ensemble trans-

formations showed very similar results for the SEIK filter and the ETKF. The differences in

the results of the ESTKF and the ETKF are significantly smaller except in the parameter

region where both filters exhibit unstable behavior. The variations in the results are related

to the ensemble transformations performed in the filters. The differences in the ensemble

21



transformations of SEIK and ETKF are very small. The transformations of the ESTKF

and ETKF are analytically identical and at the initial time of the experiments also identical

up to numerical precision. However, in the full twin experiments the tiny differences grow

due to the finite precision of the computations in combination with the nonlinearity of the

model.

Using a Cholesky decomposition in the original SEIK filter with deterministic ensemble

transformation resulted in higher errors than the application of the symmetric square root.

This effect was caused by an inferior ensemble quality. Accordingly, the experiments indicate

that for deterministic ensemble transformations, the symmetric square-root should be used

in the SEIK filter.

The assimilations with random ensemble transformations provided results that were su-

perior to those using deterministic transformations. This effect was caused by the fact that

with randomization the ensemble statistics were closer to Gaussian distributions, which are

assumed in the analysis step of the Kalman filter. In the case of random transformations,

the original SEIK filter with Cholesky decomposition provided state estimates of the same

quality as the other filter methods. The numerical results are particular for the specific

implementation of the filter algorithms as well as the Lorenz-96 model. However, following

the analytical considerations, other implementations of the SEIK filter, the ESTKF, and the

ETKF should provide similar results.

The findings of this study unify the developments of the SEIK filter with the class of

ensemble square-root Kalman filters. Further, the newly introduced ESTKF variant of the

SEIK filter provides consistent projections between the ensemble space and the error sub-

space. Together with the ETKF, the ESTKF has the advantage to provide minimum trans-
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formations of the ensemble members. If the minimum transformation is not required, the

original SEIK filter is also well suited for practical data assimilation applications.
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APPENDIX

Generation of matrix Ω

The generation of the matrix Ω based on random numbers has been discussed by Hoteit

(2001) and Pham (2001) as “second order exact sampling”. With respect to generating a

particular deterministic form Ω̂ of Ω, we review its proposed generation. Note that the

algorithm to generate Ω results in spherical sigma points discussed by Wang et al. (2004).

Matrix Ω is required to have orthonormal columns. In addition, the columns need to be

orthogonal to the vector whose elements are all one. A Householder matrix associated with

the vector ai = (ai,1, . . . , ai,i)
T of size i can be used to generate Ω. It is given by

h(ai) = Ii×i −
1

|ai,i| + 1
asign

i

(

asign
i

)T
. (A1)

Here, asign
i is identical to ai except for the last element, which is a

sign
i,i = ai,i + sign(ai,i−1).

Using h(ai), the following recursion (see Hoteit 2001) generates a random matrix Ω:
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1. Set Ω1 = a1 where a1 is 1 or −1 with equal probability.

2. Recursion: For i = 2, . . . , m− 1 initialize a random vector ai of unit norm. Then use the

first i− 1 columns of the Householder matrix h(ai) in Eq. (A1), denoted by h−, to compute

the i × i matrix

Ωi =
(

h−(ai)Ωi−1 ai

)

(A2)

3. For am = m−1/2(1, . . . , 1)T compute the final m × (m − 1) matrix Ω as

Ω = h−(am)Ωm−1. (A3)

A simple deterministic variant of Ω can be obtained by taking

Ω̂ = h−(am) (A4)

with am = m−1/2(1, . . . , 1)T . This is equivalent to choosing Ωm−1 = I(m−1)×(m−1) in (A3).
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Hoteit, I., 2001: Filtres de kalman réduits et efficaces pour l’assimilation de données en
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Table 1. Summary of the leading computational cost of the ensemble transformations as
a function of ensemble size m, number of observations p, and state dimension n.

Filter Cost
ETKF O(pm2 + m3 + nm2)
SEIK O (p(m − 1)2 + m(m − 1)2 + nm(m − 1))

30



Table 2. Skewness and kurtosis for the case of deterministic ensemble transformations.
Shown are the median and the semi-interquartile range (SIQR) for an experiment with 5000
analysis steps for m = 40 and a forgetting factor of 0.97.

skewness kurtosis
Filter median SIQR median SIQR
ETKF 0.025 0.456 0.2 0.79
SEIK-orig 0.025 0.630 2.1 2.46
SEIK-sqrt 0.024 0.441 0.2 0.69
ESTKF 0.023 0.445 0.2 0.76
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Fig. 1. RMS mean errors for the SEIK-orig (top), SEIK-sqrt (second row), ESTKF (third
row), and ETKF (last row). Left: errors obtained using deterministic ensemble transforma-
tion matrices; Right: error obtained using random transformation matrices.
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