
The Parallel Data Assimilation Framework PDAF
for scalable sequential data assimilation

Lars Nerger
Alfred Wegener Institute for Polar and Marine Research
Bremerhaven, Germany

and

Bremen Supercomputing Competence Center BremHLR

lars.nerger@awi.de

Overview

Focus on computational aspects of data assimilation

  Sequential data assimilation

  Parallel Data Assimilation Framework PDAF

  Parallel performance with PDAF

Lars Nerger - Scalable data assimilation with PDAF

Sequential Data Assimilation

Lars Nerger - Scalable data assimilation with PDAF

Sequential Data Assimilation

Lars Nerger - Scalable data assimilation with PDAF

Goal

Combine model and observations
for improved state representation

Method

Iteration:

Common sequential algorithms

  Ensemble-based Kalman filters

  Particle filters

Forecast:
Propagate state and error

estimate

Analysis:
Correct model state estimate

when observations are
available.

Ocean chlorophyll assimilation into
NASA Ocean Biogeochemical Model
(with Watson Gregg, NASA GSFC)

  Generation of daily re-analysis maps
of chlorophyll at ocean surface

  Work toward multivariate assimilation

Coastal assimilation of ocean surface
temperature (project “DeMarine
Environment”, AWI and BSH)

  North Sea and Baltic Sea
  Improve operational forecast skill,

e.g. for storm surges

Application examples

Lars Nerger - Scalable data assimilation with PDAF

STD NOAA-BSHcmod	

STD NOAA-Assim	

Computational and Practical Issues

Memory: Huge amount of memory required
 (model fields and ensemble matrix)

Computing: Huge requirement of computing time
 (ensemble integrations)

Parallelism: Natural parallelism of ensemble integration exists
 - but needs to be implemented

Implementation: Existing models often not prepared for data
 assimilation

„Fixes“: Filter algorithms need „fixes“ and tuning
 (literature provides typical methods)

Lars Nerger - Scalable data assimilation with PDAF

Parallel Data Assimilation Framework

Lars Nerger - Scalable data assimilation with PDAF

Models and Filter Algorithms

  Sequential assimilation algorithms require limited information

  no physics needed!

  relation of model fields to state vector

  observations (time, type, location, error)

Because of this:

  Filter algorithms can be developed and implemented
 independently from model

  Model can be developed independently from the filter

  Parallelization of ensemble forecast can be implemented
 independently from model

Lars Nerger - Scalable data assimilation with PDAF

Motivation for a Framework

A framework allows to
  Provide fully implemented parallelized and optimized

filter algorithms

  Provide collection of „fixes“, which showed
good performance in studies

  Provide parallelization support (parallel environment) for
ensemble forecasts

  Provide uniform interface for a model to data assimilation

  Simplify implementation of data assimilation systems
with existing models

Lars Nerger - Scalable data assimilation with PDAF

Online and Offline modes

Offline
  Separate executable programs

for model and filter

  Ensemble forecast by running
sequence of models

  Analysis by filter program

  Data exchange model-filter by
files on disk

Online
  Couple model and filter into

single executable program

  Run one program for whole
assimilation task (forecasts and
analysis)

Lars Nerger - Scalable data assimilation with PDAF

  Advantage: Rather easy
implementation (file reading/
writing routines, no change to
model code)

  Disadvantage: Limited efficiency

  Disadvantage: More
implementation work, incl.
extension of model code.

  Advantage: Computationally
very efficient

Model
initialization

time integration
post processing

Filter
Initialization

analysis
re-initialization

Observations
obs. vector

obs. operator
obs. error

PDAF: Logical separation of assimilation system

state
time

state
observations Core of PDAF

Lars Nerger - Scalable data assimilation with PDAF

mesh data

Exchange through module/common
Explicit interface

PDAF: Design considerations

 Combination of filter with model with minimal changes
to model code

 No subroutine-requirement for model

 Control of assimilation program coming from model

 Easy switching between different filters

 Easy switching between different observational data
sets

 Complete parallelism in model, filter, and framework

Lars Nerger - Scalable data assimilation with PDAF

Online: Extending a Model for Data Assimilation

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Do i=1, nsteps

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Do i=1, nsteps

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

Model

false

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

init_parallel_pdaf

Do

Do i=1, nsteps

PDAF_get_state

PDAF_init

doexit>0?

PDAF_put_state
Filter-Analysis

true

Extension for
data assimilation

External Do-loop an be
avoided – less flexibility!

Lars Nerger - Scalable data assimilation with PDAF

  Interface independent of filter
(except for names of user-supplied subroutines)

  Plain calls to subroutines with basic data types

  User-supplied routines for elementary operations:

  field transformations between model and filter

  observation-related operations

  filter pre/post-step

  User supplied routines can be implemented
as routines of the model
(e.g. share common blocks or modules)

  Model-sided configuration of assimilation system

  Low abstraction level for optimal performance

PDAF Standard Interface

Lars Nerger - Scalable data assimilation with PDAF

2-level Parallelism

Filter

Forecast Analysis Forecast

1. Multiple concurrent model tasks

2. Each model task can be parallelized

  Analysis step is also parallelized

Model 1

Model 2

Model 3

Model 1

Model 2

Model 3

Lars Nerger - Scalable data assimilation with PDAF

  FEOM (Finite-Element Ocean Model)

  PDAF’s “home” model; all features

  MIPOM (met.no, by I. Burud)

  First implementation not done by myself

  NOBM (NASA Ocean-Biogeochemical Model)

  For ocean-color assimilation

  BSHcmod (Project DeMarine Environment)

  Toward operational use in North/Baltic Seas

  ADCIRC (at KAUST, I. Hoteit, with Umer Altaf)

  3 days for basic implementation

Existing Online Implementations

Lars Nerger - Scalable data assimilation with PDAF

 Implementations mostly from filter-comparison studies

  Ensemble Kalman filter (EnKF, Evensen, 1994)

  SEEK filter (Pham et al., 1998a)

  SEIK filter (Pham et al., 1998b)

  ETKF (Bishop et al., 2001)

  LSEIK filter (Nerger et al., 2006)

  LETKF (Hunt et al., 2007)

  EnSKF (Whitaker & Hamill, 2002)

  LSEIK with OBC (Nerger/Gregg, 2008)

Filter algorithms in PDAF

with localization

Lars Nerger - Scalable data assimilation with PDAF

  Language: Fortran95
  Motivated by ocean circulation models

  Can be compiled and linked as a library

 Parallelization: MPI

 Required Libraries: BLAS & LAPACK

  For compilation: make

 Compilation and execution verified on many different
machines (from notebook to supercomputer)

Software aspects

Lars Nerger - Scalable data assimilation with PDAF

  Open source

  Web site
 pdaf.awi.de

  Code download

  Documentation wiki

  Distributed is the source code of PDAF
together with an example implementation

PDAF is available!

Lars Nerger - Scalable data assimilation with PDAF

Parallel Performance of PDAF

Lars Nerger - Scalable data assimilation with PDAF

Test case: „Twin Experiment“

  FEOM (Finite Element Ocean Model)

  North Atlantic, 1 degree resolution, 20 z-levels (small mesh)

  Assimilate synthetic sea level observations over 2 years

  Data available each 10 days; all grid points

Assimilation impact

 improve model fields by 2 orders of magnitude

Application Example

day day day
Lars Nerger - Scalable data assimilation with PDAF

  Performance tests on
 SGI Altix ICE at HRLN (German “High performance computer north”)

 nodes: 2 quad-core Intel Xeon Gainestown at 2.93GHz
 network: 4x DDR Infiniband
 compiler: Intel 10.1, MPI: MVAPICH2

  Ensemble forecasts
  are naturally parallel

  dominate computing time
 Example: parallel forecast over 10 days: 45s
 SEIK with 16 ensemble members: 0.1s
 LSEIK with 16 ensemble members: 0.7s

Parallel performance of PDAF

Lars Nerger - Scalable data assimilation with PDAF

Speedup of LSEIK with domain decomposition

State dimension n = 300,000
Observations m = 30,000
Ensemble size N

Lars Nerger - Scalable data assimilation with PDAF

  LSEIK performs sequence of
local optimizations on sub-
subdomains defined by influence
radius for observations
  near-ideal speedup for analysis

step and resampling (ensemble
transformation)

  total speedup is limited by

  non-local gathering of
 observation-state residuals

  pre/poststep

Parallel Performance

Use between 64 and 4096 processors of
SGI Altix ICE cluster (Intel processors)

94-99% of computing time in model
integrations

Speedup: Increase number of processes
for each model task, fixed ensemble size

  factor 6 for 8x processes/model task

  one reason: time stepping solver
 needs more iterations

512 proc.

4096 proc.

64/512 proc.

4096 proc.

512 proc.
64/512 proc.

Ti
m

e
in

cr
ea

se
 fa

ct
or

S
pe

ed
up

Scalability: Increase ensemble size, fixed
number of processes per model task

  increase by ~7% from 512 to 4096
 processes (8x ensemble size)

  one reason: more communication
 on the network

Summary

PDAF provides

 Simplified implementation of assimilation systems

  Flexibility: Different assimilation algorithms and data
configurations within one executable

  Full utilization of parallelism in models and filters

 Good scalability for large-scale systems

http://pdaf.awi.de

Lars Nerger - Scalable data assimilation with PDAF

Thank you!

