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Overview 

Focus on computational aspects of data assimilation 

  Sequential data assimilation 

  Parallel Data Assimilation Framework PDAF 

  Parallel performance with PDAF 
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Sequential Data Assimilation 
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Sequential Data Assimilation 
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Goal 

Combine model and observations 
for improved state representation 
 

Method 

Iteration: 

 

 

 
Common sequential algorithms 

  Ensemble-based Kalman filters 

  Particle filters 

Forecast:  
Propagate state and error 

estimate 

Analysis:  
Correct model state estimate 

when observations are 
available. 



Ocean chlorophyll assimilation into 
NASA Ocean Biogeochemical Model 
(with Watson Gregg, NASA GSFC) 

  Generation of daily re-analysis maps  
of chlorophyll at ocean surface 

  Work toward multivariate assimilation 

Coastal assimilation of ocean surface 
temperature (project “DeMarine 
Environment”, AWI and BSH)  

  North Sea and Baltic Sea 
  Improve operational forecast skill,  

e.g. for storm surges 

Application examples    
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STD NOAA-BSHcmod	



STD NOAA-Assim	





Computational and Practical Issues 

Memory: Huge amount of memory required 
  (model fields and ensemble matrix)  

Computing: Huge requirement of computing time 
  (ensemble integrations) 

Parallelism: Natural parallelism of ensemble integration exists  
  - but needs to be implemented 

Implementation: Existing models often not prepared for data  
  assimilation 

„Fixes“: Filter algorithms need „fixes“ and tuning  
  (literature provides typical methods) 
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Parallel Data Assimilation Framework 
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Models and Filter Algorithms 

  Sequential assimilation algorithms require limited information 

  no physics needed! 

  relation of model fields to state vector 

  observations (time, type, location, error) 

Because of this:  

  Filter algorithms can be developed and implemented  
    independently from model 

  Model can be developed independently from the filter 

  Parallelization of ensemble forecast can be implemented  
    independently from model  
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Motivation for a Framework 

A framework allows to 
  Provide fully implemented parallelized and optimized 

filter algorithms 

  Provide collection of „fixes“, which showed  
good performance in studies 

  Provide parallelization support (parallel environment) for 
ensemble forecasts 

  Provide uniform interface for a model to data assimilation 

 

  Simplify implementation of data assimilation systems  
with existing models  
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Online and Offline modes 

Offline 
  Separate executable programs 

for model and filter 

  Ensemble forecast by running 
sequence of models 

  Analysis by filter program 

  Data exchange model-filter by 
files on disk 

Online 
  Couple model and filter into 

single executable program 

  Run one program for whole 
assimilation task (forecasts and 
analysis) 
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  Advantage: Rather easy 
implementation (file reading/
writing routines, no change to 
model code) 

  Disadvantage: Limited efficiency  

  Disadvantage: More 
implementation work, incl. 
extension of model code. 

  Advantage: Computationally 
very efficient 



 

 

 

 

  

Model 
initialization 

time integration 
post processing 

Filter 
Initialization 

analysis 
re-initialization 

Observations 
obs. vector 

obs. operator 
obs. error 

PDAF: Logical separation of assimilation system 

state 
time 

state 
observations Core of PDAF 
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mesh data 

Exchange through module/common 
Explicit interface 



PDAF: Design considerations 

 Combination of filter with model with minimal changes 
to model code 

 No subroutine-requirement for model 

 Control of assimilation program coming from model 

 Easy switching between different filters 

 Easy switching between different observational data 
sets 

 Complete parallelism in model, filter, and framework 
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Online: Extending a Model for Data Assimilation 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Do i=1, nsteps 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

 

 

  

 

 

 

 

 

 

 

 

 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Do i=1, nsteps 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

Model 

false 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

init_parallel_pdaf 

Do 

Do i=1, nsteps 

PDAF_get_state 

PDAF_init 

doexit>0? 

PDAF_put_state 
Filter-Analysis 

true 

Extension for  
data assimilation 

External Do-loop an be 
avoided – less flexibility! 
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  Interface independent of filter  
(except for names of user-supplied subroutines) 

  Plain calls to subroutines with basic data types 

  User-supplied routines for elementary operations: 

  field transformations between model and filter 

  observation-related operations 

  filter pre/post-step 

  User supplied routines can be implemented  
as routines of the model  
(e.g. share common blocks or modules) 

  Model-sided configuration of assimilation system 

  Low abstraction level for optimal performance 
 

PDAF Standard Interface 
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2-level Parallelism 

Filter 

Forecast Analysis Forecast 

1. Multiple concurrent model tasks  

2. Each model task can be parallelized 

  Analysis step is also parallelized 

Model 1 

Model 2 

Model 3 

Model 1 

Model 2 

Model 3 
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  FEOM (Finite-Element Ocean Model) 

  PDAF’s “home” model; all features 

  MIPOM (met.no, by I. Burud) 

  First implementation not done by myself 

  NOBM (NASA Ocean-Biogeochemical Model) 

  For ocean-color assimilation 

  BSHcmod (Project DeMarine Environment) 

  Toward operational use in North/Baltic Seas 

  ADCIRC (at KAUST, I. Hoteit, with Umer Altaf) 

  3 days for basic implementation 

Existing Online Implementations 
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 Implementations mostly from filter-comparison studies 

  Ensemble Kalman filter (EnKF, Evensen, 1994) 

  SEEK filter (Pham et al., 1998a) 

  SEIK filter (Pham et al., 1998b) 

  ETKF (Bishop et al., 2001) 

  LSEIK filter (Nerger et al., 2006) 

  LETKF (Hunt et al., 2007) 

  EnSKF (Whitaker & Hamill, 2002) 

  LSEIK with OBC (Nerger/Gregg, 2008) 

Filter algorithms in PDAF 

with localization 
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  Language: Fortran95 
  Motivated by ocean circulation models 

  Can be compiled and linked as a library 

 Parallelization: MPI 

 Required Libraries: BLAS & LAPACK 

  For compilation: make 

 

 Compilation and execution verified on many different 
machines (from notebook to supercomputer) 

Software aspects 

Lars Nerger - Scalable data assimilation with PDAF 



  Open source 

  Web site 
   pdaf.awi.de 

  Code download 

  Documentation wiki  

  Distributed is the source code of PDAF  
together with an example implementation 

PDAF is available! 
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Parallel Performance of PDAF 
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Test case: „Twin Experiment“ 

  FEOM (Finite Element Ocean Model) 

  North Atlantic, 1 degree resolution, 20 z-levels (small mesh) 

  Assimilate synthetic sea level observations over 2 years 

  Data available each 10 days; all grid points 

Assimilation impact 

 improve model fields by 2 orders of magnitude 
  

Application Example 

day day day 
Lars Nerger - Scalable data assimilation with PDAF 



  Performance tests on 
   SGI Altix ICE at HRLN (German “High performance computer north”) 

        nodes: 2 quad-core Intel Xeon Gainestown at 2.93GHz  
        network: 4x DDR Infiniband  
        compiler: Intel 10.1, MPI: MVAPICH2 

  Ensemble forecasts  
  are naturally parallel 

  dominate computing time 
    Example: parallel forecast over 10 days: 45s 
           SEIK with 16 ensemble members: 0.1s 
           LSEIK with 16 ensemble members: 0.7s 

 
  

Parallel performance of PDAF 
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Speedup of LSEIK with domain decomposition 

State dimension  n = 300,000 
Observations       m = 30,000 
Ensemble size  N 
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  LSEIK performs sequence of  
local optimizations on sub- 
subdomains defined by influence  
radius for observations 
  near-ideal speedup for analysis  

step and resampling (ensemble  
transformation) 

  total speedup is limited by  

  non-local gathering of  
    observation-state residuals 

  pre/poststep 



Parallel Performance 

Use between 64 and 4096 processors of 
SGI Altix ICE cluster (Intel processors) 

94-99% of computing time in model 
integrations   

Speedup: Increase number of processes 
for each model task, fixed ensemble size 

  factor 6 for 8x processes/model task 

  one reason: time stepping solver  
    needs more iterations 

512 proc. 

4096 proc. 

64/512 proc. 

4096 proc. 

512 proc. 
64/512 proc. 
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Scalability: Increase ensemble size, fixed 
number of processes per model task 

  increase by ~7% from 512 to 4096    
    processes (8x ensemble size) 

  one reason: more communication  
    on the network 



Summary 

PDAF provides 

 Simplified implementation of assimilation systems 

  Flexibility: Different assimilation algorithms and data 
configurations within one executable 

  Full utilization of parallelism in models and filters 

 Good scalability for large-scale systems 

 

 

http://pdaf.awi.de 
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Thank you! 


