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Overview 

Focus on computational aspects of data assimilation 

  Sequential data assimilation 

  Parallel Data Assimilation Framework PDAF 

  Parallel performance with PDAF 
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Sequential Data Assimilation 
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Sequential Data Assimilation 
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Goal 

Combine model and observations 
for improved state representation 
 

Method 

Iteration: 

 

 

 
Common sequential algorithms 

  Ensemble-based Kalman filters 

  Particle filters 

Forecast:  
Propagate state and error 

estimate 

Analysis:  
Correct model state estimate 

when observations are 
available. 



Ocean chlorophyll assimilation into 
NASA Ocean Biogeochemical Model 
(with Watson Gregg, NASA GSFC) 

  Generation of daily re-analysis maps  
of chlorophyll at ocean surface 

  Work toward multivariate assimilation 

Coastal assimilation of ocean surface 
temperature (project “DeMarine 
Environment”, AWI and BSH)  

  North Sea and Baltic Sea 
  Improve operational forecast skill,  

e.g. for storm surges 

Application examples    
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STD NOAA-BSHcmod	


STD NOAA-Assim	




Computational and Practical Issues 

Memory: Huge amount of memory required 
  (model fields and ensemble matrix)  

Computing: Huge requirement of computing time 
  (ensemble integrations) 

Parallelism: Natural parallelism of ensemble integration exists  
  - but needs to be implemented 

Implementation: Existing models often not prepared for data  
  assimilation 

„Fixes“: Filter algorithms need „fixes“ and tuning  
  (literature provides typical methods) 
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Parallel Data Assimilation Framework 

Lars Nerger - Scalable data assimilation with PDAF 



Models and Filter Algorithms 

  Sequential assimilation algorithms require limited information 

  no physics needed! 

  relation of model fields to state vector 

  observations (time, type, location, error) 

Because of this:  

  Filter algorithms can be developed and implemented  
    independently from model 

  Model can be developed independently from the filter 

  Parallelization of ensemble forecast can be implemented  
    independently from model  
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Motivation for a Framework 

A framework allows to 
  Provide fully implemented parallelized and optimized 

filter algorithms 

  Provide collection of „fixes“, which showed  
good performance in studies 

  Provide parallelization support (parallel environment) for 
ensemble forecasts 

  Provide uniform interface for a model to data assimilation 

 

  Simplify implementation of data assimilation systems  
with existing models  
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Online and Offline modes 

Offline 
  Separate executable programs 

for model and filter 

  Ensemble forecast by running 
sequence of models 

  Analysis by filter program 

  Data exchange model-filter by 
files on disk 

Online 
  Couple model and filter into 

single executable program 

  Run one program for whole 
assimilation task (forecasts and 
analysis) 
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  Advantage: Rather easy 
implementation (file reading/
writing routines, no change to 
model code) 

  Disadvantage: Limited efficiency  

  Disadvantage: More 
implementation work, incl. 
extension of model code. 

  Advantage: Computationally 
very efficient 



 

 

 

 

  

Model 
initialization 

time integration 
post processing 

Filter 
Initialization 

analysis 
re-initialization 

Observations 
obs. vector 

obs. operator 
obs. error 

PDAF: Logical separation of assimilation system 

state 
time 

state 
observations Core of PDAF 
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mesh data 

Exchange through module/common 
Explicit interface 



PDAF: Design considerations 

 Combination of filter with model with minimal changes 
to model code 

 No subroutine-requirement for model 

 Control of assimilation program coming from model 

 Easy switching between different filters 

 Easy switching between different observational data 
sets 

 Complete parallelism in model, filter, and framework 
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Online: Extending a Model for Data Assimilation 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Do i=1, nsteps 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

 

 

  

 

 

 

 

 

 

 

 

 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Do i=1, nsteps 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

Model 

false 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

init_parallel_pdaf 

Do 

Do i=1, nsteps 

PDAF_get_state 

PDAF_init 

doexit>0? 

PDAF_put_state 
Filter-Analysis 

true 

Extension for  
data assimilation 

External Do-loop an be 
avoided – less flexibility! 
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  Interface independent of filter  
(except for names of user-supplied subroutines) 

  Plain calls to subroutines with basic data types 

  User-supplied routines for elementary operations: 

  field transformations between model and filter 

  observation-related operations 

  filter pre/post-step 

  User supplied routines can be implemented  
as routines of the model  
(e.g. share common blocks or modules) 

  Model-sided configuration of assimilation system 

  Low abstraction level for optimal performance 
 

PDAF Standard Interface 

Lars Nerger - Scalable data assimilation with PDAF 



2-level Parallelism 

Filter 

Forecast Analysis Forecast 

1. Multiple concurrent model tasks  

2. Each model task can be parallelized 

  Analysis step is also parallelized 

Model 1 

Model 2 

Model 3 

Model 1 

Model 2 

Model 3 
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  FEOM (Finite-Element Ocean Model) 

  PDAF’s “home” model; all features 

  MIPOM (met.no, by I. Burud) 

  First implementation not done by myself 

  NOBM (NASA Ocean-Biogeochemical Model) 

  For ocean-color assimilation 

  BSHcmod (Project DeMarine Environment) 

  Toward operational use in North/Baltic Seas 

  ADCIRC (at KAUST, I. Hoteit, with Umer Altaf) 

  3 days for basic implementation 

Existing Online Implementations 
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 Implementations mostly from filter-comparison studies 

  Ensemble Kalman filter (EnKF, Evensen, 1994) 

  SEEK filter (Pham et al., 1998a) 

  SEIK filter (Pham et al., 1998b) 

  ETKF (Bishop et al., 2001) 

  LSEIK filter (Nerger et al., 2006) 

  LETKF (Hunt et al., 2007) 

  EnSKF (Whitaker & Hamill, 2002) 

  LSEIK with OBC (Nerger/Gregg, 2008) 

Filter algorithms in PDAF 

with localization 

Lars Nerger - Scalable data assimilation with PDAF 



  Language: Fortran95 
  Motivated by ocean circulation models 

  Can be compiled and linked as a library 

 Parallelization: MPI 

 Required Libraries: BLAS & LAPACK 

  For compilation: make 

 

 Compilation and execution verified on many different 
machines (from notebook to supercomputer) 

Software aspects 
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  Open source 

  Web site 
   pdaf.awi.de 

  Code download 

  Documentation wiki  

  Distributed is the source code of PDAF  
together with an example implementation 

PDAF is available! 
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Parallel Performance of PDAF 
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Test case: „Twin Experiment“ 

  FEOM (Finite Element Ocean Model) 

  North Atlantic, 1 degree resolution, 20 z-levels (small mesh) 

  Assimilate synthetic sea level observations over 2 years 

  Data available each 10 days; all grid points 

Assimilation impact 

 improve model fields by 2 orders of magnitude 
  

Application Example 

day day day 
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  Performance tests on 
   SGI Altix ICE at HRLN (German “High performance computer north”) 

        nodes: 2 quad-core Intel Xeon Gainestown at 2.93GHz  
        network: 4x DDR Infiniband  
        compiler: Intel 10.1, MPI: MVAPICH2 

  Ensemble forecasts  
  are naturally parallel 

  dominate computing time 
    Example: parallel forecast over 10 days: 45s 
           SEIK with 16 ensemble members: 0.1s 
           LSEIK with 16 ensemble members: 0.7s 

 
  

Parallel performance of PDAF 
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Speedup of LSEIK with domain decomposition 

State dimension  n = 300,000 
Observations       m = 30,000 
Ensemble size  N 
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  LSEIK performs sequence of  
local optimizations on sub- 
subdomains defined by influence  
radius for observations 
  near-ideal speedup for analysis  

step and resampling (ensemble  
transformation) 

  total speedup is limited by  

  non-local gathering of  
    observation-state residuals 

  pre/poststep 



Parallel Performance 

Use between 64 and 4096 processors of 
SGI Altix ICE cluster (Intel processors) 

94-99% of computing time in model 
integrations   

Speedup: Increase number of processes 
for each model task, fixed ensemble size 

  factor 6 for 8x processes/model task 

  one reason: time stepping solver  
    needs more iterations 

512 proc. 

4096 proc. 

64/512 proc. 

4096 proc. 

512 proc. 
64/512 proc. 
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Scalability: Increase ensemble size, fixed 
number of processes per model task 

  increase by ~7% from 512 to 4096    
    processes (8x ensemble size) 

  one reason: more communication  
    on the network 



Summary 

PDAF provides 

 Simplified implementation of assimilation systems 

  Flexibility: Different assimilation algorithms and data 
configurations within one executable 

  Full utilization of parallelism in models and filters 

 Good scalability for large-scale systems 

 

 

http://pdaf.awi.de 
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Thank you! 


