
The Parallel Data Assimilation Framework PDAF
for scalable sequential data assimilation

Lars Nerger
Alfred Wegener Institute for Polar and Marine Research
Bremerhaven, Germany

and

Bremen Supercomputing Competence Center BremHLR

lars.nerger@awi.de

Overview

Focus on computational aspects of data assimilation

  Sequential data assimilation

  Parallel Data Assimilation Framework PDAF

  Parallel performance with PDAF

Lars Nerger - Scalable data assimilation with PDAF

Sequential Data Assimilation

Lars Nerger - Scalable data assimilation with PDAF

Sequential Data Assimilation

Lars Nerger - Scalable data assimilation with PDAF

Goal

Combine model and observations
for improved state representation

Method

Iteration:

Common sequential algorithms

  Ensemble-based Kalman filters

  Particle filters

Forecast:
Propagate state and error

estimate

Analysis:
Correct model state estimate

when observations are
available.

Ocean chlorophyll assimilation into
NASA Ocean Biogeochemical Model
(with Watson Gregg, NASA GSFC)

  Generation of daily re-analysis maps
of chlorophyll at ocean surface

  Work toward multivariate assimilation

Coastal assimilation of ocean surface
temperature (project “DeMarine
Environment”, AWI and BSH)

  North Sea and Baltic Sea
  Improve operational forecast skill,

e.g. for storm surges

Application examples

Lars Nerger - Scalable data assimilation with PDAF

STD NOAA-BSHcmod	

STD NOAA-Assim	

Computational and Practical Issues

Memory: Huge amount of memory required
 (model fields and ensemble matrix)

Computing: Huge requirement of computing time
 (ensemble integrations)

Parallelism: Natural parallelism of ensemble integration exists
 - but needs to be implemented

Implementation: Existing models often not prepared for data
 assimilation

„Fixes“: Filter algorithms need „fixes“ and tuning
 (literature provides typical methods)

Lars Nerger - Scalable data assimilation with PDAF

Parallel Data Assimilation Framework

Lars Nerger - Scalable data assimilation with PDAF

Models and Filter Algorithms

  Sequential assimilation algorithms require limited information

  no physics needed!

  relation of model fields to state vector

  observations (time, type, location, error)

Because of this:

  Filter algorithms can be developed and implemented
 independently from model

  Model can be developed independently from the filter

  Parallelization of ensemble forecast can be implemented
 independently from model

Lars Nerger - Scalable data assimilation with PDAF

Motivation for a Framework

A framework allows to
  Provide fully implemented parallelized and optimized

filter algorithms

  Provide collection of „fixes“, which showed
good performance in studies

  Provide parallelization support (parallel environment) for
ensemble forecasts

  Provide uniform interface for a model to data assimilation

  Simplify implementation of data assimilation systems
with existing models

Lars Nerger - Scalable data assimilation with PDAF

Online and Offline modes

Offline
  Separate executable programs

for model and filter

  Ensemble forecast by running
sequence of models

  Analysis by filter program

  Data exchange model-filter by
files on disk

Online
  Couple model and filter into

single executable program

  Run one program for whole
assimilation task (forecasts and
analysis)

Lars Nerger - Scalable data assimilation with PDAF

  Advantage: Rather easy
implementation (file reading/
writing routines, no change to
model code)

  Disadvantage: Limited efficiency

  Disadvantage: More
implementation work, incl.
extension of model code.

  Advantage: Computationally
very efficient

Model
initialization

time integration
post processing

Filter
Initialization

analysis
re-initialization

Observations
obs. vector

obs. operator
obs. error

PDAF: Logical separation of assimilation system

state
time

state
observations Core of PDAF

Lars Nerger - Scalable data assimilation with PDAF

mesh data

Exchange through module/common
Explicit interface

PDAF: Design considerations

 Combination of filter with model with minimal changes
to model code

 No subroutine-requirement for model

 Control of assimilation program coming from model

 Easy switching between different filters

 Easy switching between different observational data
sets

 Complete parallelism in model, filter, and framework

Lars Nerger - Scalable data assimilation with PDAF

Online: Extending a Model for Data Assimilation

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Do i=1, nsteps

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Do i=1, nsteps

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

Model

false

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

init_parallel_pdaf

Do

Do i=1, nsteps

PDAF_get_state

PDAF_init

doexit>0?

PDAF_put_state
Filter-Analysis

true

Extension for
data assimilation

External Do-loop an be
avoided – less flexibility!

Lars Nerger - Scalable data assimilation with PDAF

  Interface independent of filter
(except for names of user-supplied subroutines)

  Plain calls to subroutines with basic data types

  User-supplied routines for elementary operations:

  field transformations between model and filter

  observation-related operations

  filter pre/post-step

  User supplied routines can be implemented
as routines of the model
(e.g. share common blocks or modules)

  Model-sided configuration of assimilation system

  Low abstraction level for optimal performance

PDAF Standard Interface

Lars Nerger - Scalable data assimilation with PDAF

2-level Parallelism

Filter

Forecast Analysis Forecast

1. Multiple concurrent model tasks

2. Each model task can be parallelized

  Analysis step is also parallelized

Model 1

Model 2

Model 3

Model 1

Model 2

Model 3

Lars Nerger - Scalable data assimilation with PDAF

  FEOM (Finite-Element Ocean Model)

  PDAF’s “home” model; all features

  MIPOM (met.no, by I. Burud)

  First implementation not done by myself

  NOBM (NASA Ocean-Biogeochemical Model)

  For ocean-color assimilation

  BSHcmod (Project DeMarine Environment)

  Toward operational use in North/Baltic Seas

  ADCIRC (at KAUST, I. Hoteit, with Umer Altaf)

  3 days for basic implementation

Existing Online Implementations

Lars Nerger - Scalable data assimilation with PDAF

 Implementations mostly from filter-comparison studies

  Ensemble Kalman filter (EnKF, Evensen, 1994)

  SEEK filter (Pham et al., 1998a)

  SEIK filter (Pham et al., 1998b)

  ETKF (Bishop et al., 2001)

  LSEIK filter (Nerger et al., 2006)

  LETKF (Hunt et al., 2007)

  EnSKF (Whitaker & Hamill, 2002)

  LSEIK with OBC (Nerger/Gregg, 2008)

Filter algorithms in PDAF

with localization

Lars Nerger - Scalable data assimilation with PDAF

  Language: Fortran95
  Motivated by ocean circulation models

  Can be compiled and linked as a library

 Parallelization: MPI

 Required Libraries: BLAS & LAPACK

  For compilation: make

 Compilation and execution verified on many different
machines (from notebook to supercomputer)

Software aspects

Lars Nerger - Scalable data assimilation with PDAF

  Open source

  Web site
 pdaf.awi.de

  Code download

  Documentation wiki

  Distributed is the source code of PDAF
together with an example implementation

PDAF is available!

Lars Nerger - Scalable data assimilation with PDAF

Parallel Performance of PDAF

Lars Nerger - Scalable data assimilation with PDAF

Test case: „Twin Experiment“

  FEOM (Finite Element Ocean Model)

  North Atlantic, 1 degree resolution, 20 z-levels (small mesh)

  Assimilate synthetic sea level observations over 2 years

  Data available each 10 days; all grid points

Assimilation impact

 improve model fields by 2 orders of magnitude

Application Example

day day day
Lars Nerger - Scalable data assimilation with PDAF

  Performance tests on
 SGI Altix ICE at HRLN (German “High performance computer north”)

 nodes: 2 quad-core Intel Xeon Gainestown at 2.93GHz
 network: 4x DDR Infiniband
 compiler: Intel 10.1, MPI: MVAPICH2

  Ensemble forecasts
  are naturally parallel

  dominate computing time
 Example: parallel forecast over 10 days: 45s
 SEIK with 16 ensemble members: 0.1s
 LSEIK with 16 ensemble members: 0.7s

Parallel performance of PDAF

Lars Nerger - Scalable data assimilation with PDAF

Speedup of LSEIK with domain decomposition

State dimension n = 300,000
Observations m = 30,000
Ensemble size N

Lars Nerger - Scalable data assimilation with PDAF

  LSEIK performs sequence of
local optimizations on sub-
subdomains defined by influence
radius for observations
  near-ideal speedup for analysis

step and resampling (ensemble
transformation)

  total speedup is limited by

  non-local gathering of
 observation-state residuals

  pre/poststep

Parallel Performance

Use between 64 and 4096 processors of
SGI Altix ICE cluster (Intel processors)

94-99% of computing time in model
integrations

Speedup: Increase number of processes
for each model task, fixed ensemble size

  factor 6 for 8x processes/model task

  one reason: time stepping solver
 needs more iterations

512 proc.

4096 proc.

64/512 proc.

4096 proc.

512 proc.
64/512 proc.

Ti
m

e
in

cr
ea

se
 fa

ct
or

S
pe

ed
up

Scalability: Increase ensemble size, fixed
number of processes per model task

  increase by ~7% from 512 to 4096
 processes (8x ensemble size)

  one reason: more communication
 on the network

Summary

PDAF provides

 Simplified implementation of assimilation systems

  Flexibility: Different assimilation algorithms and data
configurations within one executable

  Full utilization of parallelism in models and filters

 Good scalability for large-scale systems

http://pdaf.awi.de

Lars Nerger - Scalable data assimilation with PDAF

Thank you!

