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ABSTRACT

Ensemble square root filters can either assimilate all observations that are

available at a given time at once, or assimilate the observations in batches or

one at a time. For large-scale models, the filters are typically applied with a

localized analysis step. This study demonstrates that the interaction of serial

observation processing and localization can destabilize the analysis process

and examines under which conditions the instability becomes significant. The

instability results from a repeated inconsistent update of the state error covari-

ance matrix that is caused by the localization. The inconsistency is present in

all ensemble Kalman filters, except the classical ensemble Kalman filter with

perturbed observations. With serial observation processing, its effect is small

in cases when the assimilation changes the ensemble of model states only

slightly. However, when the assimilation has a strong effect on the state es-

timates, the interaction of localization and serial observation processing can

significantly deteriorate the filter performance. In realistic large-scale appli-

cations, when the assimilation changes the states only slightly and when the

distribution of the observations is irregular and changing over time, the insta-

bility is likely not significant.
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1. Introduction25

Ensemble square-root Kalman filters are an efficient deterministic variant of the original En-26

semble Kalman Filter (EnKF, Evensen 1994; Burgers et al. 1998). Common members of this class27

of filters are the Ensemble Transform Kalman filter (ETKF, Bishop et al. 2001), the Ensemble28

Adjustment Kalman Filter (EAKF, Anderson 2001, 2003), and the Ensemble Square-root Kalman29

filter with serial processing of observations (EnSRF, Whitaker and Hamill 2002). Recently, also30

the Singular “Evolutive” Interpolated Kalman (SEIK) filter (Pham et al. 1998a; Pham 2001) and31

the newly developed Error-subspace Transform Kalman filter (ESTKF, Nerger et al. 2012b) have32

been classified as ensemble square-root filters (Nerger et al. 2012b). All ensemble square-root33

Kalman filters express the analysis equation of the Kalman filter in a square-root form combined34

with an explicit transformation of the state ensemble (see Tippett et al. 2003). Most filter methods35

are formulated to assimilate all observations synchronously. However, the EAKF and the EnSRF36

are typically described to assimilate single observations serially, which increases the efficiency of37

these filter formulations. Further, both algorithms are algorithmically identical in case of serial ob-38

servation processing. For example, the DART assimilation system (Anderson et al. 2009) provides39

an EAKF with serial observation processing.40

Localization of covariance matrices in ensemble-based Kalman filters is required for data assim-41

ilation into large-scale models, because the typical ensemble size is limited to the order of 10 to42

100 states, which is much smaller than the degrees of freedom of the models. By damping long-43

distance covariances, localization stabilizes the analysis update of the filter and increases the rank44

of the forecast covariance matrix as well as the local number of degrees of freedom for the analysis.45

The localization is either applied to the forecast covariance matrix, here denoted covariance local-46

ization (CL) (Houtekamer and Mitchell 1998, 2001), or to the observation error covariance matrix47
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(Hunt et al. 2007), here denoted observation localization (OL). The relation of both localization48

methods was the focus of several recent studies (Sakov et al. 2010; Greybush et al. 2011; Janjić49

et al. 2011). Further, Nerger et al. (2012a) proposed a method, denoted regulated localization, to50

make the localizing effect of OL and CL comparable. OL is typically applied in algorithms that51

do not explicitly compute the forecast error covariance matrix like the LETKF (Hunt et al. 2007),52

the SEIK filter, and the ESTKF. In contrast, the EAKF and the EnSRF compute elements of the53

forecast covariance matrix and apply CL. While the filters that apply OL assimilate all available54

observations at once, the EAKF and EnSRF methods that use CL perform a serial assimilation of55

single observations.56

This study examines the interaction between CL and serial processing of observations in detail57

and demonstrates that it can destabilize of the analysis update. It is known in the community58

(e.g. C. Snyder, personal communication) that the serial processing of observations can lead to59

the situation that the actual analysis result depends on the order in which the observations are60

assimilated. This dependence is caused by the fact that the update equation for the state error61

covariance matrix is not fulfilled when localization is applied. This was already noted by Whitaker62

and Hamill (2002), but there is yet no publication that studies the effect of the inconsistent update63

of the state error covariance matrix. Whitaker et al. (2008) used the observation ordering to develop64

a variant of the EnSRF in which the observations are assimilated in an order of decreasing impact65

to the assimilation. The motivation for this scheme was described to be that it allows for an66

adaptive observation thinning algorithm by omitting observations that insignificantly reduce the67

estimated state error variance. Whitaker et al. (2008) also compared the assimilation performance68

of the EnSRF with the LETKF when applied with a global atmospheric model and found only69

small differences. Similarly, Holland and Wang (2013) compared the LETKF with the EnSRF70

without particular observation ordering for the assimilation with a simplified atmospheric model.71
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They found only small differences in the state estimates with slightly smaller errors in the LETKF72

estimates.73

While the previous studies found small differences between the estimates of LETKF and En-74

SRF it is unclear which conditions influence the differences and whether there are conditions75

under which larger differences can occur. To some extent the differences in the state estimates76

are a result of different localization strengths in the OL and CL schemes for the same localization77

function (see Miyoshi and Yamane 2007). Here, this difference will be reduced by using for OL78

the regulated localization function by Nerger et al. (2012a). The instability that can result from79

the interaction of localization and serial observation processing is demonstrated and examined80

in numerical experiments with the small Lorenz-96 model (Lorenz 1996; Lorenz and Emanuel81

1998). To compare the different effects of serial and synchronous assimilation of the observations,82

the two widely used filter methods EnSRF and LETKF are applied. For a direct examination of83

the influence of serial observation processing also a formulation of the EnSRF that assimilates all84

observations at once is applied. While this formulation is too costly to be applied in large-scale85

systems, it can be used with the small Lorenz-96 model.86

The study is organized as follows: The EnSRF and the LETKF will be reviewed together with87

their localizations in section 2. The section also discusses the reasons for the inconsistent update88

of the covariance matrix. The configuration of the twin experiments with the Lorenz-96 model are89

described in section 3. The filter instability is demonstrated in time-mean results in section 4. The90

interaction of the localization and serial observation processing is further examined in Section 5,91

while Section 6 examines the effect of the order in which the observations are assimilated. In Sec-92

tion 7 the relevance of the findings with regard to real atmospheric and oceanographic applications93

is discussed. Finally, conclusions are drawn in section 8.94
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2. Filter algorithms95

This section reviews the EnSRF with CL (Whitaker and Hamill 2002) as a typical method using96

serial observation processing and the LETKF using OL (Hunt et al. 2007), which uses synchronous97

assimilation.98

All ensemble-based Kalman filters use an ensemble of m vectors xa(α),α = 1, . . . ,m, of model99

state realizations of dimension n,100

Xk = {x
a(1)
k , . . . ,xa(m)

k } , (1)

to represent the state estimate and its uncertainty at some time tk. The state estimate is given by101

the ensemble mean102

xa
k =

1
m

m

∑
α=1

xa(α)
k , Xa

k := {xa
k , . . . ,x

a
k} (2)

where the superscript ’a’ denotes the analysis. The uncertainty of the state estimate is described103

by the ensemble covariance matrix104

Pa
k =

1
m−1

(X
′a
k )(X

′a
k )

T . (3)

where the prime denotes the matrix X′ak := Xa
k−Xa

k of ensemble perturbations. The data assimila-105

tion procedure is initialized with an ensemble Xa
0 that is generated based on some initial estimates106

of the state and the error covariance matrix. To compute a forecast, all ensemble members are107

integrated by the fully dynamical model resulting in the forecast ensemble X f
k . In the following,108

the time index ’k’ is omitted as in the analysis step of the filters all quantities refer to the same109

time.110

a. The EnSRF111

Whitaker and Hamill (2002) proposed an ensemble square-root Kalman filter with serial pro-112

cessing of observations (EnSRF). In this filter, the state estimate and the ensemble perturbations113
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are updated iteratively in a loop over all individual observations. This method is motivated by the114

fact that for a single observation the formulation of Potter (see Maybeck 1979, Sec. 7.3) can be ap-115

plied to update the state error covariance matrix. This formulation is particularly efficient because116

matrix inversions, required for multiple observations, reduce to the inverse of a single number.117

Let the subscript (i) indicate quantities at the i’th iteration of the loop over single observations.118

Likewise, the subscript denotes the index of the scalar observation assimilated at the i’th iteration.119

The state estimate is updated according to120

xa
(i) = x f

(i)+K(i)

(
yo
(i)−H(i)x f

(i)

)
(4)

with the Kalman gain K(i) of size n×1 given by121

K(i) = P f
(i)H

T
(i)

(
H(i)P

f
(i)H

T
(i)+R(i)

)−1
. (5)

Here, H(i) is the observation operator for observation i. yo
(i) is i’th element of the observation vector122

of size p and R is the observation error covariance matrix. To allow for the serial observation123

processing, R has to be diagonal.124

For a single observation, the matrices HP f HT and R are scalars and P f HT is a vector of size n.125

The matrix of ensemble perturbations is updated according to126

X′a(i) = X′ f
(i)− K̃(i)H(i)X

′ f
(i) (6)

with127

K̃(i) =

1+

√√√√ R(i)

H(i)P
f
(i)H

T
(i)+R(i)

−1

K(i) . (7)

The factor in front of the gain K(i) reduces the Kalman gain for the update of the ensemble per-128

turbations. This reduction is required for statistical consistency as without it the analysis error129

variances would be underestimated unless an ensemble of perturbed observations would be used130

(Burgers et al. 1998). A forgetting factor (Pham et al. 1998b) to inflate the covariances can be131
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applied in this formulation by replacing X′ f by ρ−1/2X′ f once before the loop over the single ob-132

servations. The forgetting factor is the older concept of covariance inflation, which is frequently133

described in terms of the inflation factor α = ρ−1/2. Equations (4) to (7) are then applied in the134

loop over all observations available at an analysis time. In the first iteration, x f
(1) and P f

(1) are given135

by the mean and covariance matrix of the ensemble forecast. In subsequent iterations of the loop,136

the analysis state and covariance matrix of the previous iteration serve as the forecast quantities.137

While the EnSRF is usually applied with serial observation processing, it can also be formulated138

to assimilate all observations at once. In this case, Eqns. (4) to (6) are applied with the full vector139

yo of observations and the corresponding observation operator. Following Whitaker and Hamill140

(2002), the reduced Kalman gain for the update of the ensemble perturbations defined by Eq. (7)141

is replaced by142

K̃ = P f HT
(

HP f HT +R
)− T

2
[(

HP f HT +R
) 1

2
+R

1
2

]−1

. (8)

For large-scale systems the evaluation of Eq. (8) would be very costly as matrices of size p× p143

have to be inverted. In the practical implementation used in numerical experiments, the matrix144

square-roots are implemented as the unique symmetric square root, which is also used for the145

LETKF. Below, this variant of the EnSRF will be referred to as EnSRF-bulk.146

The localization of the EnSRF is performed as CL by multiplying the forecast state covariance147

matrix P f element-wise with a correlation matrix D of compact support. As the full P f will be148

very large for high-dimensional models, the localization is often applied in the observation space149

to the matrices P f HT and HP f HT . For a single observation, HP f HT reduces to the single value150

of the estimated observed state variance at the location of the observation. Accordingly, HP f HT
151

is not modified for the EnSRF. However, the local analysis uses the modified vector152

(
P f HT

)loc

(i)
= DPH

(i) ◦
(

P f HT
)
(i)

(9)
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where ◦ denotes the element-wise product. DPH
(i) is a weight vector, which is a column of the153

correlation matrix D projected onto the observation space.154

In the experiments performed below, the localization matrix D will be constructed using a 5th-155

order polynomial that mimics a Gaussian function but has compact support (Gaspari and Cohn156

1999, shortly GC99). The localization is determined by the support radius at which the value of157

the function reaches zero.158

b. The LETKF159

The LETKF was introduced by Hunt et al. (2007) as a localized variant of the ETKF (Bishop160

et al. 2001). The LETKF applies a localized analysis with OL. Here, the LETKF is reviewed fol-161

lowing Nerger et al. (2012a), which provides a particularly efficient formulation of the algorithm.162

For the global ETKF, the forecast ensemble is projected onto the space of ensemble perturbations163

of dimension m by164

X f ′ := X f T. (10)

The projection matrix T has size m×m and its elements are defined by:165

Ti, j :=


1− 1

m for i = j

− 1
m for i 6= j

(11)

For the analysis update, the transform matrix A of size m×m is defined by166

A−1 := ρ(m−1)I+(HX f ′)T R−1HX f ′ (12)

where I is the identity and ρ with 0 < ρ ≤ 1 is the forgetting factor (Pham et al. 1998b) that is167

used to implicitly inflate the forecast error covariance estimate. Using A, the analysis covariance168

matrix is given by169

Pa = X f ′A
(

X f ′
)T

. (13)
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The analysis state estimate is computed from the forecast as170

xa = x f +X f ′w (14)

where the weight vector w of size m is given by171

w := A
(

HX f ′
)T

R−1
(

y−Hx f
)
. (15)

The ensemble is now transformed as172

Xa = Xa +
√

m−1X f ′C. (16)

Here, C is the symmetric square root of A. It is computed from the singular value decomposition173

USV = A−1 such that C = US−1/2UT . Using the definition of X f ′ in Eq. (10) one can avoid174

to explicitly compute X f ′ , which leads to a very efficient algorithm in the typical situation that175

both the state dimension and the number of observations are much larger than the ensemble size.176

Namely, HX f ′ in Eq. (14) can be computed as (HX f )T. Further, in Eq. (16), the term X f ′C can177

be computed as X f (TC), which is a much cheaper operation than computing X f ′ explicitly.178

To obtain the LETKF as a localized form of the ETKF, the analysis and the ensemble trans-179

formation are performed in a loop through disjoint local analysis domains. In the simplest case,180

each single grid point is independently updated. For each local analysis domain, the observations181

are weighted by their distance from this domain using an element-wise product of the matrix R−1
182

with a localization matrix D̃. D̃ is usually constructed from a correlation function with compact183

support, like the GC99 function. Thus, observations beyond a certain distance obtain zero weight184

and can be neglected for the local analysis update. Using the subscript σ to denote the local analy-185

sis domain and δ to denote the domain of the corresponding observations of non-zero weight, the186

LETKF can be written as187

xa
σ = x f

σ +X f ′
σ wδ , (17)
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188

wδ = Aδ (Hδ X f ′)T(D̃δ ◦R−1
δ

)(
yδ −Hδ x f

)
, (18)

189

A−1
δ

= ρδ (m−1)I+(Hδ X f ′)T (D̃δ ◦R−1
δ

)
Hδ X f ′ , (19)

190

Xa
σ = Xa

σ +
√

m−1X f ′
σ Cδ , (20)

where the matrix Cδ is the symmetric square root of Aδ .191

In the experiments described below, the localization matrix D̃δ is constructed using the GC99192

function as for the EnSRF. Note, that D̃δ is not a correlation matrix, because the diagonal elements193

vary with the distance. The effective localization length will be different from the prescribed sup-194

port radius for OL (Nerger et al. 2012a). To make the effective localization lengths in the EnSRF195

with CL and the LETKF with OL comparable, the regulated localization function introduced by196

Nerger et al. (2012a) is used for the LETKF. The function ensures that the localization effect in197

the analysis step is identical for CL and OL in case of a single observation. For multiple obser-198

vations, the exact function depends on the number of observations, but the function for a single199

observation can be used as an approximation. For a given localization function dCL used for CL200

(e.g. the 5th-order polynomial of GC99), the regulated weight function for assimilating a single201

observation with OL is202

dOLR =
dCLσ2

R

HP f HT +σ2
R

(
1− dCLHP f HT

HP f HT +σ2
R

)−1

. (21)

Here, HP f HT is the single element of the matrix HP f H corresponding to the single observation.203

σ2
R is the observation error variance. In the local analysis of the LETKF, several observations204

within the support radius around a local analysis domain are assimilated at once. A weight is205

computed for each observation, with the term HPHT being computed as the square of the corre-206

sponding row of Hδ X f ′ divided by m−1.207
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c. Inconsistency of the covariance update with localization208

Whitaker and Hamill (2002) noted that the update equation for the state covariance matrix in209

the EnSRF, Eq. (6), is not consistent if localization with a smooth correlation function is used.210

Whitaker and Hamill (2002) reported that their study used the GC99 function despite the possible211

violation of Eq. (6), because it resulted in estimates with lower estimation errors compared to the212

case when a Heaviside step function was used, which would avoid the inconsistency.213

The reason for the inconsistency lies in the used update equation for the covariance matrix. In214

the derivation of the Kalman filter one obtains215

Pa = (I−KH)P f (I−KH)T +KRKT . (22)

If the same P f and R are used in Eq. (22) and in the Kalman gain K = P f HT (HP f HT +R
)−1,216

Eq. (22) simplifies to217

Pa = (I−KH)P f . (23)

Equation (23) is used to update the covariance matrix in all ensemble Kalman filters, except the218

classical EnKF with perturbed observations (Evensen 1994; Burgers et al. 1998). The localization219

methods CL and OL only modify the Kalman gain, but not P f and R in Eq. (22). Hence, Eqns.220

(22) and (23) are no longer equivalent if localization is applied. When Eq. (23) is directly used221

with a localized gain K one can even obtain a non-symmetric matrix Pa. This, however, will not222

occur in the ensemble-based Kalman filters as these update the covariance matrix implicitly by223

updating the state ensemble.224

Over all, the inconsistency of the covariance matrix update does occur in all filter algorithms225

that base on the simplified single-sided update equation (23). The difference between synchronous226

observation assimilation (as in the LETKF) and serial observation processing (as in the EnSRF) is,227

however, that the former method computes a single update of the matrix P f because it assimilates228
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all observations at a given time at once, while the EnSRF computes an update of P f for each single229

observation. In the LETKF, the ensemble members representing Pa are immediately propagated230

by the model after the ensemble transformation. In contrast, in the serial observation processing231

of the EnSRF, each intermediately computed P(i) (represented by the ensemble states) is used to232

assimilate the next observation. In the repeated update of the covariance matrix, the inconsistencies233

can accumulate. This effect will result in the observed dependence of the assimilation result on234

the order in which the observations are processed and in an inferior assimilation result compared235

to filter algorithms that assimilate all observation synchronously.236

For the EnSRF, the covariance matrix update is derived from Eq. (23). For the i’s observation it237

follows from Eq. (6) as238

Pa
(i) =

(
I− K̃(i)H(i)

)
P f
(i)

(
I− K̃(i)H(i)

)T (24)

with K̃(i) defined by Eq. (7). Even though the matrix update in Eq. (24) is symmetric it is inconsis-239

tent with Eq. (22) when P f
(i) is localized in K̃(i). One can check that it is not possible to re-derive the240

single-observation update of Potter (see Maybeck 1979, Sec. 7.3) when the localization is taken241

into account. Thus, it is not possible to derive an alternative factor α̃(i) that ensures the equality of242

Pa in Eqns. (22) and (24), because there is in general no solution for α̃(i) that ensures the equality.243

However, even if the symmetric update Eq. (22) could be used, the analysis result of the serial244

observation processing would still depend on the order in which the observations are assimilated245

unless one localizes P f
(i) in Eq. (22). The Appendix provides a simple 2-dimensional example for246

applying the three equations (22) to (24) with serial and bulk processing of observations.247

3. Configuration of numerical experiments248

To assess the assimilation performances of the EnSRF and LETKF, identical twin experiments249

are conducted using the Lorenz-96 model (Lorenz 1996; Lorenz and Emanuel 1998). This non-250
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linear model has been used in several studies to examine the behavior of different ensemble-based251

Kalman filters (e.g. Anderson 2001; Whitaker and Hamill 2002; Ott et al. 2004; Lawson and252

Hansen 2004; Sakov and Oke 2008; Janjić et al. 2011). The same configuration as in Nerger et al.253

(2012a) is used and the results can be directly compared with their results.254

The Lorenz-96 model uses the non-dimensional equations255

dx j

dt
=
(
x j+1− x j−2

)
x j−1− x j +F (25)

where j = 1, . . . ,40 is the grid point index with cyclic boundary conditions and F = 8 is a forcing256

parameter. The time stepping is performed using a fourth-order Runge-Kutta scheme with a non-257

dimensional time step size of 0.05. The model and the filter algorithms have been implemented258

within the Parallel Data Assimilation Framework (PDAF, Nerger et al. 2005; Nerger and Hiller259

2013, http://pdaf.awi.de).260

A trajectory representing the “truth” is computed over 60000 time steps from the initial state of261

constant value of 8.0 but x20 = 8.008, following Lorenz and Emanuel (1998). Synthetic observa-262

tions of the full state are generated by disturbing the true trajectory by uncorrelated random normal263

noise. Three cases will be examined in which the standard deviation σR of the observation error264

will be 1, 0.5, and 0.1. The strength of the assimilation impact increases when the observation265

errors shrink. The initial error estimate from the ensemble used in the experiments is 2.5. Thus,266

the largest σR is 40% of the error estimate, while the smallest values is only 4% of it.267

Second-order exact sampling from the true trajectory Pham (2001) is used to generate the initial268

ensemble. To assess the assimilation performance over a long assimilation experiment, the assim-269

ilation is performed at each time step over 50000 time steps with an ensemble of 10 states. For the270

observations, an offset of 1000 time steps of the true trajectory is used to avoid the spin-up phase271

of the model. The localization is applied with a fixed support radius. All experiments are repeated272
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ten times with varying random numbers for the generation of the initial ensemble. The assimila-273

tion performance will be assessed by the root mean square error of each experiment averaged over274

each set of ten experiments. The random numbers used to perturb the observations are not varied.275

It would have a similar effect to varying the initial ensemble.276

4. Mean assimilation performance277

The effect of the serial observation processing can be demonstrated in a full-length experiment278

with the Lorenz-96 model. Figure 1 shows the averaged RMS errors for a range of forgetting279

factors and support radii of the localization function and three different observations errors. The280

filters diverge when the time-mean RMS error is larger than the observation error. If at least281

one of the 10 repetitions of each experiment diverges, the rectangle for this parameter pair is left282

white. The overall shape of the RMS error distribution, namely a minimum error region that is283

surrounded by larger errors, shows that the parameter ranges chosen for the experiments cover the284

optimal parameter values.285

The first two rows of Fig. 1 show the average RMS errors for the serial EnSRF and LETKF,286

respectively. As discussed by Nerger et al. (2012a), the regulated localization as used here in the287

LETKF should make the filter results with OL very similar to those with CL. However, there are288

significant differences, which are most pronounced for the smallest observation error of σ = 0.1289

(right panels of Fig. 1). In this case, the LETKF converges in a much larger parameter region than290

the EnSRF. Further, the LETKF yields significantly smaller mean RMS errors than the EnSRF.291

When the assimilation strength is reduced by increasing the observation error, the error differences292

become smaller. For σR = 0.5 (middle column of Fig. 1), the minimum RMS errors obtained293

with the EnSRF are slightly larger than for the LETKF. In addition, there is a parameter range294

(forgetting factors 0.95 and 0.96, localization radii 18 and 20), where the EnSRF yields larger295
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errors than the LETKF. This effect is unusual as one typically obtains a closed area of minimal296

errors (see, e.g. Janjić et al. 2011) as is visible for the LETKF. For the largest observation error297

of σR = 1.0 (left panels of Fig. 1), the RMS error in dependence of the forgetting factor and the298

support radius are very similar for the EnSRF and LETKF.299

The EnSRF-bulk update scheme discussed in Section 2a avoids the serial observation processing,300

but applies CL. Hence, comparing the serial EnSRF with EnSRF-bulk allows to directly see the301

influence of serial observation processing. The averaged RMS errors for EnSRF-bulk are shown302

in the third row of Fig. 1. In the stable assimilation regime, e.g. for σR = 0.1 with a support303

radius below 18 grid points, the serial EnSRF shows up to about 2% smaller RMS errors than304

the EnSRF-bulk. This behavior is probably due to the fact that the serial observation processing305

avoids matrix inversions. For larger support radii and smaller inflation the EnSRF-bulk shows306

smaller RMS errors and less tendency to diverge compared to the serial EnSRF. The parameter307

region in which the EnSRF-bulk converges is larger than for the serial EnSRF and similar to the308

convergence region of the LETKF. However, in the case of σR = 0.1 the EnSRF-bulk diverges for309

support radii above 28 grid points. This divergence can be attributed to a large condition number310

of the matrix HP f HT +R, which needs to be inverted in the EnSRF-bulk. Overall, the LETKF311

shows the largest convergence region and the smallest RMS errors. This behavior is influenced by312

the OL with regulated localization function which is used by the LETKF.313

5. Stability of the EnSRF analysis with localization314

To examine the reasons for the differences in the RMS errors obtained with the EnSRF, EnSRF-315

bulk and LETKF, the first analysis step of the experiments discussed above is examined in more316

detail. While obviously the first analysis step is not necessarily representative for the whole assim-317

ilation experiment it nonetheless allows to study the different behaviors of the filters. At the first318
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analysis step, the experiments start with a ‘climatological’ state estimate with an RMS error of319

about 3.5. The initial ensemble estimate of the error is slightly lower with about 2.5. The error of320

the analysis state after the first analysis step depends on the observation error. It is larger than the321

asymptotic error level, which is reached only after several forecast-analysis cycles. The advantage322

of examining the first analysis step is that it shows the instability in a very clear way. Further,323

the results are practically uninfluenced by the model nonlinearity as only a single time step was324

computed.325

The parameters considered in this section are a forgetting factor of 0.95 and a support radius of326

20 grid points. For these parameters, all three filter formulations converge and the averaged RMS327

errors discussed in Section 4 are close to their minimum.328

The EnSRF is configured to assimilate each observation in a loop starting from the observation329

at the grid point with index 1 and then ordered with increasing index. Thus, when the state of size330

40 is fully observed, the state estimate and the ensemble are modified 40 times in each analysis331

step. The panels of Fig. 2 show the true and estimated RMS errors of the state for the sequence of332

assimilating 1 to 40 observations. To be able to directly examine one assimilation series, only one333

ensemble realization is shown here. The exact shape of the curves shown in Fig. 2 is specific for the334

set of random numbers used to generate the ensemble and those used to generate the observations.335

However, using other random numbers does not change the overall conclusions. Fig. 2 also shows336

the RMS errors from the analogous experiments with the LETKF and the EnSRF-bulk. Here, all337

observations are assimilated at once. To be able to study the dependence of the RMS error on the338

number of observations, 40 experiments are performed for each filter and each observation error in339

which between 1 and 40 observations are assimilated. In contrast to the EnSRF, the intermediate340

results would not be realized in an experiment with 40 observations.341
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For σR = 1.0 the upper panel of figure 2 shows that with a growing number of observations, the342

true and estimated RMS errors generally decrease. However, when about half of the observations343

are assimilated the true RMS errors (solid lines) increase, but finally decrease again when more ob-344

servations are assimilated. This interim increase is larger for the EnSRF and EnSRF-bulk than for345

the LETKF. Overall, it is visible that the estimated errors (dashed lines) of the EnSRF and EnSRF-346

bulk are smaller than those of the LETKF. In addition, when 40 observations are assimilated, the347

true error of the EnSRF is 2.02 and hence slightly larger than the true error of 1.86 of the LETKF,348

while the true error of the EnSRF-bulk is 1.8. The difference between EnSRF and LETKF for349

40 observations is statistically significant, when repeating the experiment with different random350

numbers, while it is not significant for LETKF and EnSRF-bulk.351

For smaller observation errors, the interim increase of the true errors for the EnSRF and EnSRF-352

bulk is larger. When 3, 27, or 28 observations are assimilated for σR = 0.5, the true error for the353

EnSRF is larger than without assimilating any observations. In contrast, the LETKF reduces the354

RMS error for 28 observations by about 40% compared to assimilating no observations.355

For σR = 0.1 the true error in the EnSRF for assimilating between 23 and 30 observations is356

up to about twice as large than without assimilation. The error estimate of the EnSRF misses357

this error increase and strongly underestimates the true error. The EnSRF-bulk shows a similar358

behavior, but with smaller peak values and a smaller error when 40 observations are assimilated.359

In contrast, the estimated error of the LETKF is much closer to the true error. The comparison of360

the RMS errors of the LETKF with those of the EnSRF and EnSRF-bulk show that the different361

localization methods lead to state estimates of significantly different quality, in particular when not362

all available observations are assimilated. However, for 40 observations the serial processing of363

the EnSRF, in which the ensemble states for each number of assimilated observations are explicitly364

computed, leads to larger errors compared to the synchronous analysis of the EnSRF-bulk.365
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The effect that leads to the large increase of the RMS error for the EnSRF and EnSRF-bulk is366

further demonstrated in Fig. 3. Here, the state estimates for the EnSRF, EnSRF-bulk and LETKF367

are shown when different numbers of observations are assimilated in the case of σR = 0.1. For 20368

observations, the estimates of all three filters are very similar. In particular, the state estimate is369

very close to the truth in the left half of the domain, where the observations were already assim-370

ilated. For 25 observations, where the mean RMS error of the EnSRF jumped to a value of 8.0,371

an unrealistically large amplitude of the wave is visible for the EnSRF in the part of the domain,372

where no observations have been assimilated yet. The behavior is similar for the EnSRF-bulk,373

but the RMS error remains smaller than for the serial EnSRF. In contrast, the LETKF estimates374

a wave of realistic amplitude. When the number of observations is further increased, the EnSRF375

and EnSRF-bulk continue to estimate a state with a large wave amplitude in the part where the376

observations haven’t yet been assimilated. The large amplitude persists up to about 30 assimilated377

observations. Finally, the amplitude is reduced and for 40 observations the state estimates of all378

three filters are realistic but the error in the estimated state is larger for the EnSRF than for the379

LETKF and EnSRF-bulk.380

The differences between the serial EnSRF and the EnSRF-bulk are only caused by the serial381

observation processing. From Fig. 2 it is visible that the difference between both filters accumu-382

lates with a growing number of assimilated observations. The repeated inconsistent covariance383

updates of the serial EnSRF do not always result in larger errors of the state estimate. E.g., if only384

observations in the first half of the model domain are assimilated, the serial EnSRF shows smaller385

errors compared to the EnSRF-bulk. However, for more than 30 observations, the RMS errors386

from EnSRF-bulk are smaller than those from the serial EnSRF for all experiments. The estimated387

RMS errors are almost identical for the EnSRF and EnSRF-bulk. However, the serial observation388

processing of the EnSRF results in covariance matrices that are distinct from those obtained with389
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the EnSRF-bulk as is also demonstrated in the Appendix. The different variance and covariance390

estimates are tapered by the localization matrix and result in state updates that are different in both391

filters. The differences are most pronounced for the smallest observation error of σR = 0.1.392

The differences between the EnSRF-bulk and the LETKF are mainly caused by the different393

localization schemes. While for a single observation, the regulated OL used for the LETKF results394

in a localization effect that is identical to the CL in the EnSRF and EnSRF-bulk, this is no longer395

the case if multiple observations are assimilated at the same time (see Nerger et al. 2012a, for a396

detailed discussion of the regulated OL). However, the regulated OL results in much better state397

estimates in particular if the observations are incomplete as is visible from Figures 2 and 3. For398

the Kalman gain, the regulated OL results in a different localization function that improves the399

state estimates without reducing the support radius of the localization. For the EnSRF, one would400

need to strongly reduce the localization support radius for CL (e.g. to 8 grid points for σR = 0.1)401

to obtain a similarly stable analysis as for the LETKF at the first analysis time. However, as Fig.402

1 shows, the RMS error for an experiment over 50000 time steps would be significantly larger for403

this smaller support radius.404

As pointed out in section 2c, the inconsistent update of the state error covariance matrix should405

not only appear in the EnSRF, but also in other filters that process observations serially. The406

LETKF method can be easily modified to perform a loop of analysis steps with single observations.407

For consistency, the forgetting factor has to be removed from Eq. (19). Instead, the ensemble408

perturbations are inflated once before the analysis step by the square-root of the inverse forgetting409

factor as done in the EnSRF. The lowermost panel of Fig. 2 shows also the RMS error for the410

LETKF with serial observation processing. Similar to the EnSRF, the RMS error shows a peak411

for 3 observations and the instability around 25 observations. The true RMS errors are lower than412

for the EnSRF and the estimated RMS errors are slightly larger. This shows that the influence of413
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the localization on the update of the covariance matrix in the serial variant of the LETKF is not414

identical to that in the EnSRF. However, the general instability of the analysis also occurs for the415

LETKF when it is applied with serial observation processing.416

Note, that the change of the EnSRF behavior that is demonstrated here for different observation417

errors is not an effect of model nonlinearity. Only a single model time step has been computed418

before the first analysis time, which does not have much influence on the ensemble distribution.419

Actually, the behavior shown in Figs. 2 and 3 would look very similar when the analysis would be420

performed at the initial time without any time stepping. Thus, one could perform this experiment421

even without the Lorenz-96 model. That is, one only needs a covariance matrix, and initial state422

estimate and a set of observations together with their error estimate. By sampling the covariance423

matrix and state estimate with a small ensemble of 10 members one could compute the analysis424

step. The larger differences in the state update for decreasing observation errors are due to the425

fact that the effect of the inconsistently updated covariances grows with the influence of the ob-426

servations on the state estimate. However, the effect of the differences can sometimes average427

out, as is visible from the nearly identical RMS errors for σR = 0.5 for about 20 to 28 assimilated428

observations (middle panel of Fig. 2).429

6. Influence of the observation order430

The analysis result in case of serial observation processing depends on the order in which the ob-431

servations are assimilated. Hence, one might wonder whether one can improve the analysis results432

obtained with the serial EnSRF by changing the order in which the observations are assimilated.433

Accordingly, the influence of the order is examined here for the application with the Lorenz-96434

model. Only the case σR = 0.1 is considered, which showed the largest influence of the serial435
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observation processing before. Further, only the serial EnSRF is examined and compared to the436

LETKF.437

The lowermost panel of Fig. 2 shows that the true RMS was largest when observations at the438

grid points 25 to 30 were assimilated. This is far from grid point 1 where the assimilation series439

started. Thus, a first test is whether one can stabilize the analysis by using a more uniform sorting440

of the observations. To this end, the observation order is revised so that the grid point indices441

of the assimilated observations are chosen like 1, 21, 11, 31, 6, 26, 16, 36 and continued so442

that the remaining gaps are filled in an approximately uniform way. The upper panel of Fig. 4443

shows the RMS error over the number of assimilated observations for this observation order. For444

comparison, also the LETKF assimilated the same observations. Using the revised observation445

order, the large peak in the RMS error of the EnSRF at around 25 assimilated observations (Fig.446

2, bottom panel) has actually disappeared. In this respect, the re-ordering of the observations447

is successful. However, up to about 20 assimilated observations, the RMS errors are now very448

close to the error without assimilation. Also, there are smaller peaks where the true RMS error449

exceeds the error without assimilation with values up to about 4.5. Further, the final RMS error450

after assimilating all 40 observations in the revised order is 0.91 and hence almost identical to the451

error of 0.94 without reordering. Fig. 4 shows that also for the LETKF more than 20 observations452

need to be assimilated to significantly reduce the RMS error. However, the RMS error remains453

smaller than that of the EnSRF and reaches a value of 0.13 when 40 observation are assimilated.454

The upper panel of Fig. 5 shows the mean RMS error for the full experiment in which the455

EnSRF with the reordered observations is applied over 50,000 analysis steps. Compared to the456

case σR = 0.1 in Fig. 1, the mean RMS errors are identical, except for some parameter choices at457

the edge to filter divergence. Even, if the observation order is randomized and a different order is458

used at each analysis time, a very similar distribution of the errors would be found (not shown).459
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Thus, the state estimate of the EnSRF with 40 observations is not significantly influenced by the460

observation order.461

An alternative to the series of global state updates in the EnSRF was introduced by Whitaker462

et al. (2008). This variant of the EnSRF, denoted below the L-EnSRF, performs individual local463

analysis updates for each grid point with the observations ordered by their influence on the state at464

the grid point. For this method one computes for each grid point the variance reduction in the anal-465

ysis update induced by a single observation. Then, the observations are assimilated individually at466

each grid point in decreasing order according to the variance reduction.467

The lower panel of Fig. 4 shows the RMS error for the L-EnSRF as a function of the number468

of assimilated observations. The RMS error remains close to the RMS error without assimilation,469

or even above it, until about 29 observation are assimilated. Thus, the individual sorting of the470

observations in the L-EnSRF also avoids the instability peak around grid points 25 to 30 in the471

original EnSRF without re-ordering. For more than 29 observation, the RMS error decreases472

strongly. The final error for 40 assimilated observations is reduced to 0.51. Hence it is significantly473

smaller than the error of the EnSRF with the original order, but larger than that of the LETKF. The474

reduction of the RMS error is also visible in the full experiment over 50000 analysis steps as475

is shown in the lower panel of Fig. 5. The minimum mean RMS error is reduced from 0.0193476

to 0.0190. This change is small, but statistically significant. Further, the filter is stabilized and477

the parameter region in which the assimilation converges is increased. However, the RMS errors478

obtained with the L-EnSRF are still larger than those of the LETKF. In addition, the region of filter479

convergence is larger for the LETKF than for the L-EnSRF.480
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7. Practical relevance of the EnSRF instability481

The numerical experiments conducted in the sections above clearly show the effect of the in-482

stability in the EnSRF analysis. However, these experiments are highly idealized. In particular,483

the Lorenz-96 model simulates only a single model field. Further, the dynamics of the model are484

homogenous and hence also the distribution of the errors in the state estimate and the ensemble485

perturbations is rather uniform. Also, the full model state was observed. The observation errors486

were varied by one order of magnitude in the experiments. This allowed to vary the strength of487

the assimilation impact. The largest influence of the serial observation processing in case of the488

EnSRF and of the regulated OL in case of the LETKF occurred for the smallest observation error489

which was only 4% of the error of the initial state estimate.490

For real-world cases (e.g. Whitaker et al. 2008; Sakov et al. 2012; Losa et al. 2014), the mean491

RMS error estimated by the ensemble is typically of the same order as the observation errors.492

In this respect, these applications should operate in the regime of the largest observation errors493

used in the idealized experiments. In this case, no significant differences between the LETKF494

and EnSRF are to be expected. However, in realistic cases the estimated errors will show spatial495

variations and larger error estimates can occur locally. E.g., if eddies appear in a high-resolution496

ocean model, the ensemble spread could become large due to varying locations of the eddies or497

when only some ensemble members simulate the eddies while other miss them. In the atmosphere498

a situation might appear with convective scale models, when some ensemble members estimate499

convection while others don’t. When in this situation accurate observations are assimilated, the500

effect of serial observation processing might deteriorate the assimilation performance. However, in501

this case also the spatial extent of the region with large state error estimates and small observation502
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errors will influence the effect of the serial observation processing. It is unclear which spatial503

extent is necessary to make the effect visible.504

The experiments with the Lorenz-96 model showed only a negligible effect of reordering or505

randomizing the observation sequence, unless one sorts the observations explicitly with decreasing506

influence and performs local analyses. However, in atmospheric data assimilation also the location507

of the observations can vary nearly randomly between successive analysis times. This kind of508

randomization might also influence the effect of the serial observation processing.509

8. Conclusion510

This study examined the influence of localization in ensemble-based Kalman filter formulations511

that perform the assimilation of an observation vector as a series over single observations. Filter512

algorithms of this type are the ensemble adjustment Kalman filter (EAKF) and the Ensemble513

Square-root Filter (EnSRF).514

Most ensemble Kalman filters update in the analysis step the state error covariance matrix, which515

is represented by the ensemble of model states, using the non-symmetric update equation of the516

Kalman filter. This equation is cheaper to evaluate than the more general symmetric update equa-517

tion, but only valid when the Kalman gain is computed with the same forecast state error covari-518

ance matrix as used in the update equation. Using a localized covariance matrix in the gain while519

using the non-localized matrix in the update equation, results in an inconsistent analysis state error520

covariance matrix. To some extent this inconsistency is inherent to all ensemble-based Kalman521

filters because they approximate the state error covariance matrix by the low-rank ensemble co-522

variance matrix, but they increase the rank for the analysis step by applying localization. Filter523

algorithms that assimilate a whole observation vector simultaneously, update the covariance ma-524
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trix only once during an analysis step. In contrast, in filters with serial observation processing the525

size of the observation vector defines how often the covariance matrix is updated.526

The assimilation performance of the EnSRF was compared with that of the local ensemble trans-527

form Kalman filter (LETKF) with regulated observation localization using twin experiments with528

the Lorenz-96 model. When the observation errors were of a similar magnitude as the initial er-529

rors of the state estimate, both filter methods showed a similar behavior. When the observation530

errors were decreased, the EnSRF showed a stronger tendency to diverge and larger minimum531

RMS errors than the LETKF and a variant of the EnSRF that assimilates all observations at once.532

Changing the observation order resulted in an improvement of the assimilation performance of533

the EnSRF. For this, each single grid point needed to be updated with an individual order of the534

observations. As proposed by Whitaker et al. (2008), ordering the observation with decreasing535

influence to reduce the estimate variance resulted in the best assimilation performance. However,536

in the twin experiments the EnSRF with localized update and individually ordered observations537

still exhibited larger minimum errors and a stronger tendency to diverge than the LETKF.538

The idealized experiments used the Lorenz-96 model. However, the repeated inconsistent update539

of the covariance matrix and hence the ensemble states is a general property with serial observa-540

tion processing. Thus, the instability of the analysis with serial observation processing should541

also occur with other models. However, for practical applications the deterioration of the filter542

performance of the EnSRF will often not be relevant. Overall, the experiments indicate, that the543

inconsistent ensemble update does only deteriorate the filter performance of the EnSRF in cases544

when the observations have a strong influence, i.e. when the observation error is small compared545

to the estimated error of the state. In most real-world applications, the observation and state errors546

have a similar magnitude and the serial observation processing should be stable. This finding is547

consistent with the fact that the EnSRF or EAKF algorithms have been successfully applied for a548
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wide range of data assimilation problems. However, one should be careful that the observation er-549

rors do not become significantly smaller than the estimated state errors and hence induce a strong550

assimilation influence.551

The LETKF method performed better than the EnSRF with smaller estimation errors and better552

stability. This difference was caused by the different localization schemes and the application of553

regulated observation localization for the LETKF. However, it is obvious that also the LETKF – as554

all other ensemble Kalman filters – performs an inconsistent update of the state error covariance555

matrix when it is are applied with localization. Thus, while the localization methods are empiric556

schemes that have been demonstrated to improve the state estimates and the stability of ensemble557

Kalman filters, their influence on the error estimates is still unclear. For example, Janjić et al.558

(2011) examined a localization variant of the SEIK filter in which the covariance matrix is updated559

using a Heaviside step function and using the smooth weighting function only for the update of the560

state estimate. While the update of the ensemble perturbations is also not fully consistent in this561

formulation, it exhibited very good assimilation performance with the Lorenz-96 model. Further562

research into localization is required to ensure consistent corrections of both the state estimate and563

the ensemble perturbations in the analysis steps of the ensemble-based Kalman filters.564
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APPENDIX567

A1. 2D Example of the serial observation assimilation568

This appendix shows a simple example of the influence of serial observation processing with569

localization and of the application of a single-sided update of the covariance matrix. Let the570
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forecast state and covariance matrix be571

x f =


1

1

 ; P f =


1 0.8

0.8 1

 (A1)

Two observations are available, which are defined by572

y =


0

0

 ; R =


0.1 0

0 0.1

 ; H =


0 1

1 0

 (A2)

The localization matrix is573

D =


1 0.25

0.25 1

 (A3)

Now, compute the analysis covariance matrices, applying the covariance localization only in the574

Kalman gain. When all observations are assimilated at once, one obtains575

Pa
(Eq. 22) =


0.089 0.007

0.007 0.089

 ; Pa
(Eq. 23) =


0.080 0.058

0.058 0.080

 (A4)

Using the serial observation processing, assimilating first the observation defined by the first576

row of H, followed by the second row, one obtains577

Pa
(Eq. 22,serial) =


0.088 0.009

0.009 0.088

 ; Pa
(Eq. 24,serial) =


0.089 0.055

0.055 0.076

 (A5)

The analysis state estimates after assimilating both observations are578

xa
(bulk) =


0.077

0.077

 ; xa
(Eq. 22,serial) =


0.097

0.073

 ; xa
(Eq. 24,serial) =


0.091

0.046

 (A6)

The correct state estimate is xa
(bulk) with the same value in both elements. With serial obser-579

vation processing, both state estimates show significant errors. However, the second element of580

xa
(Eq. 22,serial), which results from applying the symmetric update Eq. (22), is close to the true581

value. For the covariance matrices, the single-sided update Eqns. (23, 24) result in much larger582
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covariances than the symmetric update equation. This effect is similar for both the bulk and the583

serial updates. However, when the update equation (24) of the EnSRF is used, also the variance584

estimate for the second state element is significantly underestimated.585
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Janjić, T., L. Nerger, A. Albertella, J. Schröter, and S. Skachko, 2011: On domain localization in612

ensemble based Kalman filter algorithms. Mon. Wea. Rev., 139, 2046–2060.613

Lawson, W. G., and J. A. Hansen, 2004: Implications of stochastic and deterministic filters as614

ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev.,615

132, 1966–1981.616

Lorenz, E. N., 1996: Predictability - a problem partly solved. Proceedings Seminar on Predictabil-617

ity, ECMWF, Reading, UK, 1–18.618

Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations:619

Simulation with a small model. J. Atm. Sci., 55, 399–414.620
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FIG. 1. Average RMS errors for the EnSRF (top), LETKF (middle) and EnSRF-bulk (bottom) for three

different observational errors: 1.0 (left), 0.5 (center), 0.1 (right). White fields denote filter divergence, which is

defined here as the case that the averaged RMS error is larger than the observational error.
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FIG. 2. True and estimated RMS errors for the first analysis step as a function of the number of assimilated

observations for observation errors σR = 1.0 (top), 0.5 (middle), and 0.1 (bottom) for the case of ρ = 0.95 and a

support radius of 20 grid points. Shown are errors for the cases EnSRF (red), LETKF (green), and EnSRF-bulk

(blue). The solid lines represent the true RMS errors, while the dashed lines are estimate errors. The black

dotted line marks the RMS error before the assimilation of observations. The lowermost panel also shows the

RMS errors for the case that the LETKF performs serial observation processing (blue). The error increase for

serial observation processing is caused by the inconsistent covariance update induced by the localization and by

different localization influences of OL and CL.
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FIG. 3. Sequence of state estimates from EnSRF (red), LETKF (green), and EnSRF-bulk (blue) for different

numbers of assimilated observations for σR = 0.1 (bottom), ρ = 0.95 and a support radius of 20 grid points.

Shown are also the true state (black) and the observations (stars).
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FIG. 4. True and estimated RMS errors for the first analysis step as a function of the number of assimilated

observations for σR = 0.1 for the case of ρ = 0.95 and a support radius of 20 grid points. Shown are the errors

for EnSRF with observations ordered for maximum distance (top) and error for the EnSRF with local analysis

and observations sorted for decreasing influence (bottom).
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FIG. 5. Average RMS errors for σR = 0.1. Shown are the errors for the EnSRF with observations ordered

for maximum distance (top) and the EnSRF with local analysis and observations sorted for decreasing influence

(bottom).
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