EGU General Assembly 2019 Short Course SC1.1

Data assimilation in the geosciences –

Practical data assimilation with the Parallel Data Assimilation Framework

Lars Nerger¹, Maria Broadbridge², Gernot Geppert³, Peter Jan van Leeuwen^{2,4}

- 1: Alfred Wegener Institute, Bremerhaven, Germany 2: University of Reading, UK
- 3: Deutscher Wetterdienst (DWD), Offenbach, Germany
 - 4: Colorado State University, Fort Collins, CO, USA

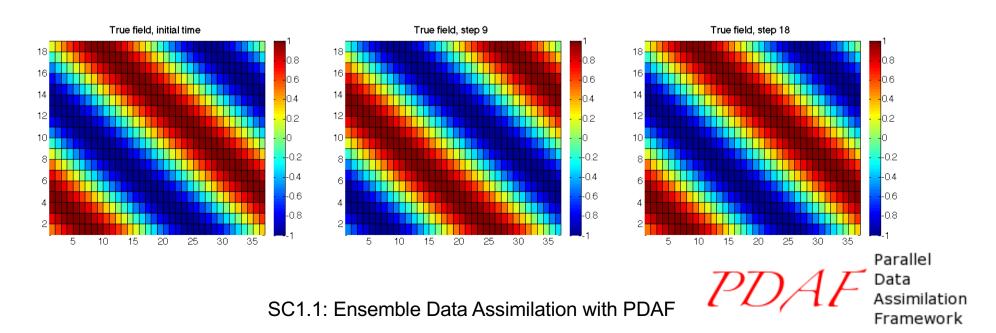
Parallel Data Assimila Framev

3

Hands-on Example: Build an Assimilation System with PDAF

Parallel Data Assimilation Framework

SC1.1: Ensemble Data Assimilation with PDAF


Download the tutorial

```
Directory layout:
                                        - build configurations
make.arch
STC
                                        - source files
tutorial
   online 2D serial
       model
                                        - serial model code
       model coupled to pdaf
                                        - final assimilation code
   pdaf
                                        - code to be added to the model
   online 2D serial.noMPI
                                        - alternative code without MPI
```

SC1.1: Ensemble Data Assimilation with PDAF

2D "Model"

- Simple 2-dimensional grid domain
- 36 x 18 grid points (longitude x latitude)
- True state: sine wave in diagonal direction (periodic for consistent time stepping)
- Simple time stepping: Shift field in vertical direction one grid point per time step
- Output to text files (18 rows) true_step*.txt

program main

initialize initialize model information:

- set dimensions
- allocate model field array
- read initial field
- integrate perform time stepping
 - shift model field
 - write new model field

end program

No parallelization!

SC1.1: Ensemble Data Assimilation with PDAF

Files in the tutorial directories

The model source code consists of the following files (model/):

- main.F90
- mod_model.F90
- initialize.F90
- integrate.F90
- Makefile

SC1.1: Ensemble Data Assimilation with PDAF

Parallel Data

Framework

Files in the tutorial directories

The PDAF coupling code consists of (pdaf/)

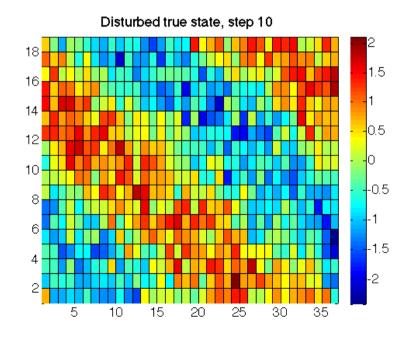
- interface subroutines (called from the model code)
 - init_parallel_pdaf.F90
 - init_pdaf.F90
 - assimilate_pdaf.F90
 - finalize_pdaf.F90
- user subroutines (called from the PDAF library), eg.
 - collect_state_pdaf.F90
- "supporting" modules and subroutines (used in the interface and user subroutines), eg.
 - mod_assimilation.F90
 - init_pdaf_parse.F90

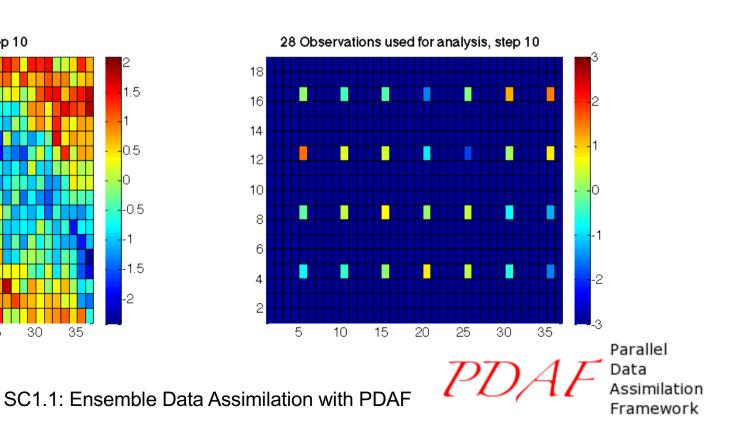
SC1.1: Ensemble Data Assimilation with PDAF

Paralle

Running the tutorial model

- cd to tutorial/online_2D_serialmodel/model
- Set environment variable PDAF_ARCH export PDAF_ARCH=linux_gfortran_openmpi
- Run make
- Run the model with ./model


- Inputs are read in from tutorial/inputs_online
- Outputs are written in tutorial/online_2D_serialmodel/model
 eg.true step10.txt


```
SC1.1: Ensemble Data Assimilation with PDAF
```

Parallel

Observations

- Add random error to true state (standard deviation 0.5)
- Select a set of observations at 28 grid points
- File storage (in inputs_online): text file, full 2D field, -999 marks 'no data' – obs_step*.txt one file for each time step

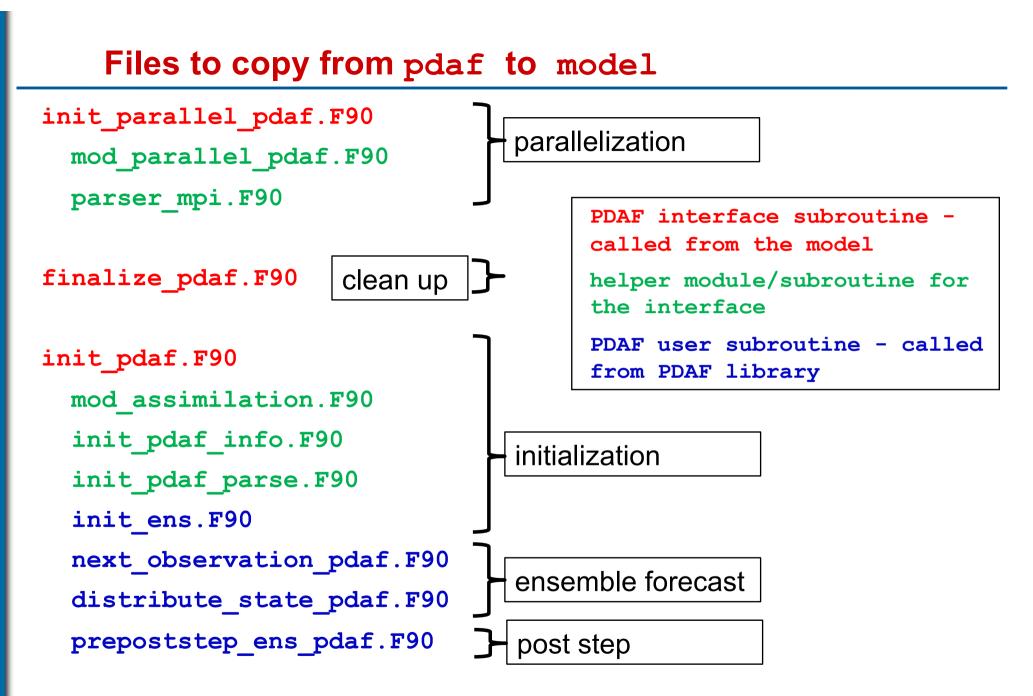
Coupling the model to PDAF: Online mode

- Combine model with PDAF into single program
 - modify Makefile to build model_pdaf
- Add 4 subroutine calls:
 - init_parallel_pdaf- add parallelization
 init_pdaf initialize assimilation
 assimilate_pdaf perform assimilation
 finalize_pdaf clean up
- Implement user subroutines, e.g. for
 - observation operator
 - initialization of observation vector
 - transfer between state vector and model fields

http://pdaf.awi.de/trac/wiki/OverviewOfUserRoutinesWithDefaultNames

Parallel Data Assimilation Framework

SC1.1: Ensemble Data Assimilation with PDAF


Online coupling: Parallelization

- Online coupling avoids writing to disk to exchange state vectors between the model and PDAF
- Add MPI to the model to run several model instances in parallel
- Run the parallel version with

```
mpirun -np <n> ./model_pdaf ...
```

- Alternative: PDAF's "flexible" approach: <u>http://pdaf.awi.de/ModifyModelForEnsembleIntegration</u>
 - cd to tutorial/online_2D_serialmodel.noMPI/model

SC1.1: Ensemble Data Assimilation with PDAF

... (continued on next slide)^{1: Ensemble Data Assimilation with PDAF}

Files to copy from pdaf to model

... (continued from previous slide)

```
assimilate_pdaf.F90
collect_state_pdaf.F90
init_dim_obs_pdaf.F90
obs_op_pdaf.F90
init_obs_pdaf.F90
prodrinva_pdaf.F90
```

• Each file contains a short summary what the subroutine does

SC1.1: Ensemble Data Assimilation with PDAF

Files to be adapted in model

main.F90	-	add calls to PDAF interface
integrate.F90	-	add calls to PDAF interface
Makefile	-	add linking to PDAF library, PDAF interface and user subroutines

- Reference solutions for the modified files are in model_coupled_to_pdaf
- When complete, run make again
- Then run

```
mpirun -np 9 ./model pdaf -dim ens 9
```

• Outputs are written to

ens_<i>_step<j>_for.txt

```
ens_<i>_step<j>_ana.txt
```

SC1.1: Ensemble Data Assimilation with PDAF

This runs a filter without localization with ensemble size 9

```
AF
Data
Assimilation
Framework
```

Plotting

- When your coupling is working, lookt at the results
- With Matlab/Octave you can use

load ens_01_step02_for.txt
pcolor(ens_01_step02_for)

- Or use the Python scripts
 - ./plot_file.py ens_<i>_step<j>_for.txt
 - ./plot_ens.py <i> <j>

More PDAF experiments

- Find PDAF command line parameters in
 - ./pdaf/init_pdaf_parse.F90
- Try for example

```
mpirun -np 4 ./model_pdaf -dim_ens 4
```

(this runs a filter (ESTKF) without localization with ensemble size 4; it gives a worse result than ensemble size 9)

```
mpirun -np 9 ./model_pdaf -dim_ens 9 -filtertype 7
```

(this runs a filter (LESTKF) with localization and localization radius 0, i.e. correcting only at observed grid points)

```
mpirun -np 9 ./model_pdaf -dim_ens 9 -filtertype 7 -
local_range 5
```

(this runs a filter (LESTKF) with localization and localization radius of 5 grid points)

Parallel

SC1.1: Ensemble Data Assimilation with PDAF

Feedback, Questions, more code, ...

Full PDAF package contains

 more tutorial code, more filters, and the fully implemented Lorenz-96 model and MITgcm model binding

Web site provides an extensive tutorial for self-study

For further questions

- Contact us at pdaf@awi.de
- Poster A.14, Friday 14:00–15:45 (L. Nerger)

Slides are available online:

http://pdaf.awi.de

DAF Assimilatio Framework